动物皮的开裂和起皱形态力学

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shiyuan Chu , Jinshuai Bai , Xi-Qiao Feng
{"title":"动物皮的开裂和起皱形态力学","authors":"Shiyuan Chu ,&nbsp;Jinshuai Bai ,&nbsp;Xi-Qiao Feng","doi":"10.1016/j.jmps.2025.106167","DOIUrl":null,"url":null,"abstract":"<div><div>Through the long history of evolution, the skins of animals have developed different geometric patterns that confer multiple functions adapted to various environments. To achieve flexibility, which is critical for their predation and survival, the skins must undergo large deformations, with relatively lower energy dissipation and stress levels. To this end, rich surface patterns can be observed on the skins of different animals, for example, cracked fragments on crocodiles, surface wrinkles on dogs, and intricately patterned scales on fishes. In this paper, we investigate how the skin patterns of animals are determined by morphomechanics and reveal that, apart from wrinkling, cracking is another essential morphomechanical strategy. A core–shell model is established to reveal how the surface patterns of the skins are affected by the biological activities, body sizes, and skin curvatures of the animals. A non-dimensional parameter is defined to differentiate the skin patterns governed by surface wrinkling and fragmentation mechanisms. For thin and soft skins (e.g., humans, frogs, and dogs), surface wrinkling is easier to occur, while for thick and stiff skins (e.g., crocodiles and dinosaurs), they evolve into cracked fragments to avoid high stresses during larger deformation. The theoretical results are in good agreement with a wide range of animals. Furthermore, scaling laws are provided for the geometric features of the morphological patterns of cracking-regulated skins. This work not only helps uncover the secrets underlying the skin morphogenesis of animals, but also hold potential applications in paleontological reconstructions and designs of biomimetic soft robots.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106167"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking and wrinkling morphomechanics of animal skins\",\"authors\":\"Shiyuan Chu ,&nbsp;Jinshuai Bai ,&nbsp;Xi-Qiao Feng\",\"doi\":\"10.1016/j.jmps.2025.106167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Through the long history of evolution, the skins of animals have developed different geometric patterns that confer multiple functions adapted to various environments. To achieve flexibility, which is critical for their predation and survival, the skins must undergo large deformations, with relatively lower energy dissipation and stress levels. To this end, rich surface patterns can be observed on the skins of different animals, for example, cracked fragments on crocodiles, surface wrinkles on dogs, and intricately patterned scales on fishes. In this paper, we investigate how the skin patterns of animals are determined by morphomechanics and reveal that, apart from wrinkling, cracking is another essential morphomechanical strategy. A core–shell model is established to reveal how the surface patterns of the skins are affected by the biological activities, body sizes, and skin curvatures of the animals. A non-dimensional parameter is defined to differentiate the skin patterns governed by surface wrinkling and fragmentation mechanisms. For thin and soft skins (e.g., humans, frogs, and dogs), surface wrinkling is easier to occur, while for thick and stiff skins (e.g., crocodiles and dinosaurs), they evolve into cracked fragments to avoid high stresses during larger deformation. The theoretical results are in good agreement with a wide range of animals. Furthermore, scaling laws are provided for the geometric features of the morphological patterns of cracking-regulated skins. This work not only helps uncover the secrets underlying the skin morphogenesis of animals, but also hold potential applications in paleontological reconstructions and designs of biomimetic soft robots.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"200 \",\"pages\":\"Article 106167\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625001437\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001437","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在漫长的进化历史中,动物的皮肤发展出了不同的几何图案,赋予了适应不同环境的多种功能。为了获得对捕食和生存至关重要的灵活性,皮肤必须经历较大的变形,相对较低的能量耗散和应力水平。为此,可以在不同动物的皮肤上观察到丰富的表面图案,例如,鳄鱼的皮肤上有破碎的碎片,狗的皮肤上有皱纹,鱼的皮肤上有复杂的鳞片图案。在本文中,我们研究了动物的皮肤模式是如何由形态力学决定的,并揭示了除了褶皱之外,开裂是另一种重要的形态力学策略。建立了一个核壳模型来揭示皮肤的表面图案是如何受到生物活动、体型和皮肤曲率的影响的。定义了一个无量纲参数来区分由表面起皱和破碎机制控制的皮肤模式。对于薄而软的皮肤(如人类、青蛙和狗),表面起皱更容易发生,而对于厚而硬的皮肤(如鳄鱼和恐龙),它们进化成有裂纹的碎片,以避免在较大变形时的高应力。理论结果与广泛的动物很好地一致。在此基础上,给出了裂纹调节皮肤形态模式几何特征的标度规律。这项工作不仅有助于揭示动物皮肤形态发生的秘密,而且在古生物学重建和仿生软体机器人的设计中具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cracking and wrinkling morphomechanics of animal skins
Through the long history of evolution, the skins of animals have developed different geometric patterns that confer multiple functions adapted to various environments. To achieve flexibility, which is critical for their predation and survival, the skins must undergo large deformations, with relatively lower energy dissipation and stress levels. To this end, rich surface patterns can be observed on the skins of different animals, for example, cracked fragments on crocodiles, surface wrinkles on dogs, and intricately patterned scales on fishes. In this paper, we investigate how the skin patterns of animals are determined by morphomechanics and reveal that, apart from wrinkling, cracking is another essential morphomechanical strategy. A core–shell model is established to reveal how the surface patterns of the skins are affected by the biological activities, body sizes, and skin curvatures of the animals. A non-dimensional parameter is defined to differentiate the skin patterns governed by surface wrinkling and fragmentation mechanisms. For thin and soft skins (e.g., humans, frogs, and dogs), surface wrinkling is easier to occur, while for thick and stiff skins (e.g., crocodiles and dinosaurs), they evolve into cracked fragments to avoid high stresses during larger deformation. The theoretical results are in good agreement with a wide range of animals. Furthermore, scaling laws are provided for the geometric features of the morphological patterns of cracking-regulated skins. This work not only helps uncover the secrets underlying the skin morphogenesis of animals, but also hold potential applications in paleontological reconstructions and designs of biomimetic soft robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信