孔洞形状对拉压非对称材料延性的影响

IF 4.7 2区 工程技术 Q1 MECHANICS
Sarvenaz Hashem-Sharifi , Navab Hosseini , Guadalupe Vadillo
{"title":"孔洞形状对拉压非对称材料延性的影响","authors":"Sarvenaz Hashem-Sharifi ,&nbsp;Navab Hosseini ,&nbsp;Guadalupe Vadillo","doi":"10.1016/j.engfracmech.2025.111106","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an in-depth investigation into how matrix tension-compression asymmetry and initial void shape impact the ductile behavior of porous materials, offering new insights that have not been explored in previous studies. To achieve this, finite element computations in ABAQUS/Standard are used to model three-dimensional unit cells with various void shapes -spherical, oblate, and prolate- embedded in a matrix material characterized by the CPB06 constitutive model, implemented via a UMAT user subroutine. The simulations span a range of stress states with variations in stress triaxiality from 0 to 2 and Lode parameter from −1 to 1, focusing on the evolution of void volume fraction and void geometry. The findings indicate that, while the initial yield locus is found to be similar for spherical and non-spherical (oblate and prolate) voids, significant variations in void growth and shape evolution occur depending on the void shape. Non-spherical voids, especially in materials with pronounced tension-compression asymmetry, exhibit significantly different growth patterns and morphological changes when compared with the spherical case.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"322 ","pages":"Article 111106"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of void shape on the ductile behavior of tension-compression asymmetric materials\",\"authors\":\"Sarvenaz Hashem-Sharifi ,&nbsp;Navab Hosseini ,&nbsp;Guadalupe Vadillo\",\"doi\":\"10.1016/j.engfracmech.2025.111106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an in-depth investigation into how matrix tension-compression asymmetry and initial void shape impact the ductile behavior of porous materials, offering new insights that have not been explored in previous studies. To achieve this, finite element computations in ABAQUS/Standard are used to model three-dimensional unit cells with various void shapes -spherical, oblate, and prolate- embedded in a matrix material characterized by the CPB06 constitutive model, implemented via a UMAT user subroutine. The simulations span a range of stress states with variations in stress triaxiality from 0 to 2 and Lode parameter from −1 to 1, focusing on the evolution of void volume fraction and void geometry. The findings indicate that, while the initial yield locus is found to be similar for spherical and non-spherical (oblate and prolate) voids, significant variations in void growth and shape evolution occur depending on the void shape. Non-spherical voids, especially in materials with pronounced tension-compression asymmetry, exhibit significantly different growth patterns and morphological changes when compared with the spherical case.</div></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":\"322 \",\"pages\":\"Article 111106\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794425003078\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425003078","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文深入研究了基体拉伸压缩不对称性和初始空洞形状如何影响多孔材料的延性行为,提供了以前研究中未探索的新见解。为了实现这一目标,使用ABAQUS/Standard中的有限元计算来模拟三维单元格,这些单元格具有不同的空隙形状(球形、扁球形和长条形),嵌入在以CPB06本构模型为特征的基体材料中,通过UMAT用户子程序实现。模拟了应力三轴性范围为0 ~ 2、Lode参数范围为−1 ~ 1的应力状态,重点研究了孔隙体积分数和孔隙几何形态的演化。研究结果表明,尽管球形和非球形(扁圆形和长条形)孔洞的初始屈服轨迹相似,但孔洞的生长和形状演变存在显著差异,这取决于孔洞的形状。非球形孔洞,特别是在具有明显拉压不对称的材料中,与球形孔洞相比,表现出明显不同的生长模式和形态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of void shape on the ductile behavior of tension-compression asymmetric materials
This paper presents an in-depth investigation into how matrix tension-compression asymmetry and initial void shape impact the ductile behavior of porous materials, offering new insights that have not been explored in previous studies. To achieve this, finite element computations in ABAQUS/Standard are used to model three-dimensional unit cells with various void shapes -spherical, oblate, and prolate- embedded in a matrix material characterized by the CPB06 constitutive model, implemented via a UMAT user subroutine. The simulations span a range of stress states with variations in stress triaxiality from 0 to 2 and Lode parameter from −1 to 1, focusing on the evolution of void volume fraction and void geometry. The findings indicate that, while the initial yield locus is found to be similar for spherical and non-spherical (oblate and prolate) voids, significant variations in void growth and shape evolution occur depending on the void shape. Non-spherical voids, especially in materials with pronounced tension-compression asymmetry, exhibit significantly different growth patterns and morphological changes when compared with the spherical case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信