免疫调节肽DP7-C介导巨噬细胞来源的外泌体miR-21b通过SOCS1/JAK2/STAT3轴促进骨再生

IF 5.4 2区 医学 Q1 BIOPHYSICS
Shuang Lai , Na Tang , Jun Guo , Li Deng , Lun Yuan , Linya Zeng , Lu Yang , Yandong Mu
{"title":"免疫调节肽DP7-C介导巨噬细胞来源的外泌体miR-21b通过SOCS1/JAK2/STAT3轴促进骨再生","authors":"Shuang Lai ,&nbsp;Na Tang ,&nbsp;Jun Guo ,&nbsp;Li Deng ,&nbsp;Lun Yuan ,&nbsp;Linya Zeng ,&nbsp;Lu Yang ,&nbsp;Yandong Mu","doi":"10.1016/j.colsurfb.2025.114709","DOIUrl":null,"url":null,"abstract":"<div><div>Periodontitis, the most prevalent chronic inflammatory disease leading to bone resorption, presents significant challenges for achieving optimal periodontal bone regeneration and repair despite efforts to reduce inflammation and stimulate osteogenesis. Macrophage-derived exosomes have emerged as promising therapeutic agents due to their osteogenic and immunomodulatory potential. Specific stimulation of macrophages can alter the exosomal composition, particularly microRNAs (miRNAs), thereby altering their functions. DP7-C, a cationic immunomodulatory peptide, is known to regulate immune responses and cellular processes by interacting with cell membranes and signaling pathways. However, its effects on macrophage exosomal miRNA profiles remain poorly understood. In this study, we identified differential miRNA expression in macrophage-derived exosomes following DP7-C stimulation, with a notable upregulation of miR-21b. To investigate the osteogenic role of exosomal miR-21b, DP7-C was utilized to facilitate the transfection of miR-21b into macrophages, leading to the secretion of exosomes enriched with miR-21b. These exosomes enhanced osteogenic differentiation <em>in vitro</em> and alleviated periodontal tissue damage in an experimental periodontitis model <em>in vivo</em>. Mechanistically, exosomal miR-21b promotes osteogenesis by directly targeting the suppressor of cytokine signaling (SOCS1), thereby activating the JAK2/STAT3 signaling pathway. This study establishes macrophage-derived exosomal miR-21b as a potent catalyst for bone regeneration, highlighting a promising acellular therapeutic strategy for periodontitis.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114709"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunomodulatory peptide DP7-C mediates macrophage-derived exosomal miR-21b to promote bone regeneration via the SOCS1/JAK2/STAT3 axis\",\"authors\":\"Shuang Lai ,&nbsp;Na Tang ,&nbsp;Jun Guo ,&nbsp;Li Deng ,&nbsp;Lun Yuan ,&nbsp;Linya Zeng ,&nbsp;Lu Yang ,&nbsp;Yandong Mu\",\"doi\":\"10.1016/j.colsurfb.2025.114709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Periodontitis, the most prevalent chronic inflammatory disease leading to bone resorption, presents significant challenges for achieving optimal periodontal bone regeneration and repair despite efforts to reduce inflammation and stimulate osteogenesis. Macrophage-derived exosomes have emerged as promising therapeutic agents due to their osteogenic and immunomodulatory potential. Specific stimulation of macrophages can alter the exosomal composition, particularly microRNAs (miRNAs), thereby altering their functions. DP7-C, a cationic immunomodulatory peptide, is known to regulate immune responses and cellular processes by interacting with cell membranes and signaling pathways. However, its effects on macrophage exosomal miRNA profiles remain poorly understood. In this study, we identified differential miRNA expression in macrophage-derived exosomes following DP7-C stimulation, with a notable upregulation of miR-21b. To investigate the osteogenic role of exosomal miR-21b, DP7-C was utilized to facilitate the transfection of miR-21b into macrophages, leading to the secretion of exosomes enriched with miR-21b. These exosomes enhanced osteogenic differentiation <em>in vitro</em> and alleviated periodontal tissue damage in an experimental periodontitis model <em>in vivo</em>. Mechanistically, exosomal miR-21b promotes osteogenesis by directly targeting the suppressor of cytokine signaling (SOCS1), thereby activating the JAK2/STAT3 signaling pathway. This study establishes macrophage-derived exosomal miR-21b as a potent catalyst for bone regeneration, highlighting a promising acellular therapeutic strategy for periodontitis.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"253 \",\"pages\":\"Article 114709\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525002164\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002164","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

牙周炎是导致骨吸收的最普遍的慢性炎症性疾病,尽管努力减少炎症和刺激成骨,但对实现最佳牙周骨再生和修复提出了重大挑战。巨噬细胞来源的外泌体由于其成骨和免疫调节的潜力而成为有前途的治疗药物。巨噬细胞的特异性刺激可以改变外泌体的组成,特别是microrna (mirna),从而改变它们的功能。DP7-C是一种阳离子免疫调节肽,通过与细胞膜和信号通路相互作用来调节免疫反应和细胞过程。然而,其对巨噬细胞外泌体miRNA谱的影响仍然知之甚少。在本研究中,我们发现巨噬细胞来源的外泌体在DP7-C刺激后miRNA表达差异,miR-21b显著上调。为了研究外泌体miR-21b的成骨作用,我们利用DP7-C促进巨噬细胞将miR-21b转染,导致富含miR-21b的外泌体分泌。这些外泌体在体外增强成骨分化,并在体内实验性牙周炎模型中减轻牙周组织损伤。在机制上,外泌体miR-21b通过直接靶向细胞因子信号传导抑制因子(SOCS1)促进成骨,从而激活JAK2/STAT3信号通路。这项研究证实巨噬细胞来源的外泌体miR-21b是骨再生的有效催化剂,强调了牙周炎的非细胞治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immunomodulatory peptide DP7-C mediates macrophage-derived exosomal miR-21b to promote bone regeneration via the SOCS1/JAK2/STAT3 axis
Periodontitis, the most prevalent chronic inflammatory disease leading to bone resorption, presents significant challenges for achieving optimal periodontal bone regeneration and repair despite efforts to reduce inflammation and stimulate osteogenesis. Macrophage-derived exosomes have emerged as promising therapeutic agents due to their osteogenic and immunomodulatory potential. Specific stimulation of macrophages can alter the exosomal composition, particularly microRNAs (miRNAs), thereby altering their functions. DP7-C, a cationic immunomodulatory peptide, is known to regulate immune responses and cellular processes by interacting with cell membranes and signaling pathways. However, its effects on macrophage exosomal miRNA profiles remain poorly understood. In this study, we identified differential miRNA expression in macrophage-derived exosomes following DP7-C stimulation, with a notable upregulation of miR-21b. To investigate the osteogenic role of exosomal miR-21b, DP7-C was utilized to facilitate the transfection of miR-21b into macrophages, leading to the secretion of exosomes enriched with miR-21b. These exosomes enhanced osteogenic differentiation in vitro and alleviated periodontal tissue damage in an experimental periodontitis model in vivo. Mechanistically, exosomal miR-21b promotes osteogenesis by directly targeting the suppressor of cytokine signaling (SOCS1), thereby activating the JAK2/STAT3 signaling pathway. This study establishes macrophage-derived exosomal miR-21b as a potent catalyst for bone regeneration, highlighting a promising acellular therapeutic strategy for periodontitis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信