Jiawen Bo , Zhipeng Gao , Xiaopan Lian , Jianing Liu
{"title":"满足有向路径划分猜想的一些有向图类","authors":"Jiawen Bo , Zhipeng Gao , Xiaopan Lian , Jianing Liu","doi":"10.1016/j.dam.2025.04.048","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> denote the order of a longest path in a digraph <span><math><mi>D</mi></math></span>. For disjoint <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, we say that <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> is a partition of <span><math><mi>D</mi></math></span>. The Directed Path Partition Conjecture (DPPC) states that for every digraph <span><math><mi>D</mi></math></span> and every integer <span><math><mi>q</mi></math></span> with <span><math><mrow><mi>q</mi><mo><</mo><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, there is a partition <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> of <span><math><mi>D</mi></math></span> such that <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>[</mo><mi>A</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>q</mi></mrow></math></span> and <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>[</mo><mi>B</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>−</mo><mi>q</mi></mrow></math></span>.</div><div>Arroyo and Galeana-Sánchez (2013) proved that every strong 3-quasi-transitive digraph satisfies the DPPC. They also showed that the DPPC holds for compositions over an acyclic digraph with digraphs that meet the DPPC. In the paper, we show that non-strong 3-quasi-transitive digraphs and strong 4-transitive digraphs also satisfy the DPPC. Additionally, we show that the DPPC holds for the compositions over a unicyclic digraph with digraphs that satisfy the DPPC and certain other conditions. Furthermore, by applying different arguments, we show that the compositions over a cycle with arbitrary digraphs meets the DPPC.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 260-267"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some digraph classes that meet the directed path partition conjecture\",\"authors\":\"Jiawen Bo , Zhipeng Gao , Xiaopan Lian , Jianing Liu\",\"doi\":\"10.1016/j.dam.2025.04.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> denote the order of a longest path in a digraph <span><math><mi>D</mi></math></span>. For disjoint <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, we say that <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> is a partition of <span><math><mi>D</mi></math></span>. The Directed Path Partition Conjecture (DPPC) states that for every digraph <span><math><mi>D</mi></math></span> and every integer <span><math><mi>q</mi></math></span> with <span><math><mrow><mi>q</mi><mo><</mo><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, there is a partition <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> of <span><math><mi>D</mi></math></span> such that <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>[</mo><mi>A</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>q</mi></mrow></math></span> and <span><math><mrow><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>[</mo><mi>B</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>λ</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>−</mo><mi>q</mi></mrow></math></span>.</div><div>Arroyo and Galeana-Sánchez (2013) proved that every strong 3-quasi-transitive digraph satisfies the DPPC. They also showed that the DPPC holds for compositions over an acyclic digraph with digraphs that meet the DPPC. In the paper, we show that non-strong 3-quasi-transitive digraphs and strong 4-transitive digraphs also satisfy the DPPC. Additionally, we show that the DPPC holds for the compositions over a unicyclic digraph with digraphs that satisfy the DPPC and certain other conditions. Furthermore, by applying different arguments, we show that the compositions over a cycle with arbitrary digraphs meets the DPPC.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 260-267\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002203\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002203","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some digraph classes that meet the directed path partition conjecture
Let denote the order of a longest path in a digraph . For disjoint , if , we say that is a partition of . The Directed Path Partition Conjecture (DPPC) states that for every digraph and every integer with , there is a partition of such that and .
Arroyo and Galeana-Sánchez (2013) proved that every strong 3-quasi-transitive digraph satisfies the DPPC. They also showed that the DPPC holds for compositions over an acyclic digraph with digraphs that meet the DPPC. In the paper, we show that non-strong 3-quasi-transitive digraphs and strong 4-transitive digraphs also satisfy the DPPC. Additionally, we show that the DPPC holds for the compositions over a unicyclic digraph with digraphs that satisfy the DPPC and certain other conditions. Furthermore, by applying different arguments, we show that the compositions over a cycle with arbitrary digraphs meets the DPPC.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.