层状ZnFe₂O₄/RGO纳米金属具有特殊的比电容,用于高性能柔性超级电容器

Nidhi Tiwari , Priya Gaikwad , R.K. Kamat , Shrinivas Kulkarni
{"title":"层状ZnFe₂O₄/RGO纳米金属具有特殊的比电容,用于高性能柔性超级电容器","authors":"Nidhi Tiwari ,&nbsp;Priya Gaikwad ,&nbsp;R.K. Kamat ,&nbsp;Shrinivas Kulkarni","doi":"10.1016/j.nwnano.2025.100110","DOIUrl":null,"url":null,"abstract":"<div><div>Composite supercapacitive electrode materials offer significant advantages over single-component electrodes by leveraging the synergistic effects of their constituents. In this study, we synthesised a layered heterostructure of ZnFe₂O₄ and reduced graphene oxide (RGO) on nickel foam using a one-step hydrothermal method. The integration of ZnFe₂O₄, known for its high theoretical capacitance, with RGO, which enhances electrical conductivity and structural stability, addresses key limitations of individual materials and results in superior electrochemical performance. The synthesized electrode exhibited an outstanding specific capacitance of 1029 F/g, demonstrating excellent charge storage capability. To evaluate practical applicability, the ZnFe₂O₄/RGO composite electrode was employed in the fabrication of asymmetric supercapacitor devices. The results indicate enhanced energy storage performance, highlighting the potential of ZnFe₂O₄/RGO as a promising material for high-performance supercapacitors. Further investigations into its long-term cycling stability and energy density could pave the way for its integration into next-generation energy storage technologies.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"10 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered ZnFe₂O₄/RGO nanopetals with exceptional specific capacitance for high-performance flexible supercapacitors\",\"authors\":\"Nidhi Tiwari ,&nbsp;Priya Gaikwad ,&nbsp;R.K. Kamat ,&nbsp;Shrinivas Kulkarni\",\"doi\":\"10.1016/j.nwnano.2025.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Composite supercapacitive electrode materials offer significant advantages over single-component electrodes by leveraging the synergistic effects of their constituents. In this study, we synthesised a layered heterostructure of ZnFe₂O₄ and reduced graphene oxide (RGO) on nickel foam using a one-step hydrothermal method. The integration of ZnFe₂O₄, known for its high theoretical capacitance, with RGO, which enhances electrical conductivity and structural stability, addresses key limitations of individual materials and results in superior electrochemical performance. The synthesized electrode exhibited an outstanding specific capacitance of 1029 F/g, demonstrating excellent charge storage capability. To evaluate practical applicability, the ZnFe₂O₄/RGO composite electrode was employed in the fabrication of asymmetric supercapacitor devices. The results indicate enhanced energy storage performance, highlighting the potential of ZnFe₂O₄/RGO as a promising material for high-performance supercapacitors. Further investigations into its long-term cycling stability and energy density could pave the way for its integration into next-generation energy storage technologies.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"10 \",\"pages\":\"Article 100110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266697812500039X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266697812500039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复合超级电容电极材料通过利用其成分的协同效应,比单组分电极具有显著的优势。在这项研究中,我们采用一步水热法在泡沫镍上合成了一种层状异质结构ZnFe₂O₄和还原氧化石墨烯(RGO)。以其高理论电容而闻名的ZnFe₂O₄与RGO的集成,提高了导电性和结构稳定性,解决了单个材料的关键限制,并带来了卓越的电化学性能。合成的电极具有1029 F/g的比电容,具有良好的电荷存储能力。为了评估其实用性,将ZnFe₂O₄/RGO复合电极用于非对称超级电容器器件的制备。结果表明,ZnFe₂O₄/RGO具有增强的储能性能,突出了其作为高性能超级电容器材料的潜力。对其长期循环稳定性和能量密度的进一步研究可以为其融入下一代储能技术铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layered ZnFe₂O₄/RGO nanopetals with exceptional specific capacitance for high-performance flexible supercapacitors

Layered ZnFe₂O₄/RGO nanopetals with exceptional specific capacitance for high-performance flexible supercapacitors
Composite supercapacitive electrode materials offer significant advantages over single-component electrodes by leveraging the synergistic effects of their constituents. In this study, we synthesised a layered heterostructure of ZnFe₂O₄ and reduced graphene oxide (RGO) on nickel foam using a one-step hydrothermal method. The integration of ZnFe₂O₄, known for its high theoretical capacitance, with RGO, which enhances electrical conductivity and structural stability, addresses key limitations of individual materials and results in superior electrochemical performance. The synthesized electrode exhibited an outstanding specific capacitance of 1029 F/g, demonstrating excellent charge storage capability. To evaluate practical applicability, the ZnFe₂O₄/RGO composite electrode was employed in the fabrication of asymmetric supercapacitor devices. The results indicate enhanced energy storage performance, highlighting the potential of ZnFe₂O₄/RGO as a promising material for high-performance supercapacitors. Further investigations into its long-term cycling stability and energy density could pave the way for its integration into next-generation energy storage technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信