Mengyu Tan , Yuxuan Tan , Haoyan Jiang , Jiaming Xue , Qiushuo Wu , Yazi Zheng , Guihong Liu , Yuanyuan Xiao , Meili Lv , Miao Liao , Lin Zhang , Shengqiu Qu , Weibo Liang
{"title":"法医DNA分析中可解释的人工智能:使用监督机器学习方法在具有挑战性的电泳图中识别等位基因","authors":"Mengyu Tan , Yuxuan Tan , Haoyan Jiang , Jiaming Xue , Qiushuo Wu , Yazi Zheng , Guihong Liu , Yuanyuan Xiao , Meili Lv , Miao Liao , Lin Zhang , Shengqiu Qu , Weibo Liang","doi":"10.1016/j.fsigen.2025.103289","DOIUrl":null,"url":null,"abstract":"<div><div>Challenging samples in capillary electrophoresis (CE)-based short tandem repeat (STR) analysis often produce artefactual signals that cannot be completely filtered out by expert electropherogram (EPG) reading systems, complicating allele interpretation. Previous studies have demonstrated the potential of artificial intelligence (AI) to address this issue by accurately distinguishing allele signals from artefacts in EPGs. Traditional machine learning models offer significant advantages in enhancing the interpretability and transparency of AI models used in DNA analysis, particularly in criminal investigations and legal contexts. In this study, five traditional machine learning algorithms were employed to train and construct models using EPG signal datasets from single-source low-template EPGs, mixture EPGs, and combined datasets. Performance evaluation and validation with additional datasets demonstrated the feasibility of these models in improving the reportability of potential information in EPGs. However, further optimization is needed for mixture EPGs to enhance classification accuracy. Implementing Receiver Operating Characteristic (ROC) curve analysis and prediction probability thresholds effectively reduced false positive classifications. Additionally, a user-friendly platform was developed for EPG signal classification based on machine learning and ensemble learning, allowing for the classification of any signal datasets using traditional machine learning models and combining the prediction results of multiple models. This platform will provide analysts with more optimal and robust results. This study shows that machine-learning-based EPG signal classification models can significantly enhance the efficiency of sample analysis and interpretation, providing a solid foundation for future research.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103289"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence in forensic DNA analysis: Alleles identification in challenging electropherograms using supervised machine learning methods\",\"authors\":\"Mengyu Tan , Yuxuan Tan , Haoyan Jiang , Jiaming Xue , Qiushuo Wu , Yazi Zheng , Guihong Liu , Yuanyuan Xiao , Meili Lv , Miao Liao , Lin Zhang , Shengqiu Qu , Weibo Liang\",\"doi\":\"10.1016/j.fsigen.2025.103289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Challenging samples in capillary electrophoresis (CE)-based short tandem repeat (STR) analysis often produce artefactual signals that cannot be completely filtered out by expert electropherogram (EPG) reading systems, complicating allele interpretation. Previous studies have demonstrated the potential of artificial intelligence (AI) to address this issue by accurately distinguishing allele signals from artefacts in EPGs. Traditional machine learning models offer significant advantages in enhancing the interpretability and transparency of AI models used in DNA analysis, particularly in criminal investigations and legal contexts. In this study, five traditional machine learning algorithms were employed to train and construct models using EPG signal datasets from single-source low-template EPGs, mixture EPGs, and combined datasets. Performance evaluation and validation with additional datasets demonstrated the feasibility of these models in improving the reportability of potential information in EPGs. However, further optimization is needed for mixture EPGs to enhance classification accuracy. Implementing Receiver Operating Characteristic (ROC) curve analysis and prediction probability thresholds effectively reduced false positive classifications. Additionally, a user-friendly platform was developed for EPG signal classification based on machine learning and ensemble learning, allowing for the classification of any signal datasets using traditional machine learning models and combining the prediction results of multiple models. This platform will provide analysts with more optimal and robust results. This study shows that machine-learning-based EPG signal classification models can significantly enhance the efficiency of sample analysis and interpretation, providing a solid foundation for future research.</div></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":\"78 \",\"pages\":\"Article 103289\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497325000699\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000699","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Explainable artificial intelligence in forensic DNA analysis: Alleles identification in challenging electropherograms using supervised machine learning methods
Challenging samples in capillary electrophoresis (CE)-based short tandem repeat (STR) analysis often produce artefactual signals that cannot be completely filtered out by expert electropherogram (EPG) reading systems, complicating allele interpretation. Previous studies have demonstrated the potential of artificial intelligence (AI) to address this issue by accurately distinguishing allele signals from artefacts in EPGs. Traditional machine learning models offer significant advantages in enhancing the interpretability and transparency of AI models used in DNA analysis, particularly in criminal investigations and legal contexts. In this study, five traditional machine learning algorithms were employed to train and construct models using EPG signal datasets from single-source low-template EPGs, mixture EPGs, and combined datasets. Performance evaluation and validation with additional datasets demonstrated the feasibility of these models in improving the reportability of potential information in EPGs. However, further optimization is needed for mixture EPGs to enhance classification accuracy. Implementing Receiver Operating Characteristic (ROC) curve analysis and prediction probability thresholds effectively reduced false positive classifications. Additionally, a user-friendly platform was developed for EPG signal classification based on machine learning and ensemble learning, allowing for the classification of any signal datasets using traditional machine learning models and combining the prediction results of multiple models. This platform will provide analysts with more optimal and robust results. This study shows that machine-learning-based EPG signal classification models can significantly enhance the efficiency of sample analysis and interpretation, providing a solid foundation for future research.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.