Peter J. Schlieker , Frank Lampe , Johann Zwirner , Benjamin Ondruschka , Michael M. Morlock , Gerd Huber
{"title":"在股骨干嵌塞过程中,软组织的动态响应可以忽略不计","authors":"Peter J. Schlieker , Frank Lampe , Johann Zwirner , Benjamin Ondruschka , Michael M. Morlock , Gerd Huber","doi":"10.1016/j.clinbiomech.2025.106530","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In cementless total hip arthroplasty stems are inserted into the bone by mallet blows. Surgeons are not instructed to adjust the force of their blows to differences among patients especially with regard to weight. Whether this is linked to complications is yet unknown. This study investigated factors that could affect the mechanical behavior of the femur-tissue system.</div></div><div><h3>Methods</h3><div>Four cadavers were subject to two total hip arthroplasties by the same surgeon – one side via a lateral approach and the contralateral side via a direct anterior approach. A mass-spring-damper model was used to replicate the mechanical response of the femur-tissue system of the cadavers and make them comparable.</div></div><div><h3>Findings</h3><div>The mechanical response in terms of mass-spring-damper parameters differed between the approaches (lateral: 16.5 kg, 29.7 N/mm, 467.1 Ns/m; direct anterior: 11.5 kg, 41.7 N/mm, 553.0 Ns/m).</div></div><div><h3>Interpretation</h3><div>Common metal-on-metal mallet blows in surgery are very short and mostly excite high frequencies that are clearly above the natural frequency of the femur-tissue system. Those overcritical force impulses make the stem slide into the femur before the bone can even start moving. Hence, the individual mechanical behavior of the femur-tissue system can be disregarded provided that the force is applied with very short blows. This needs to be considered for any attempt to replace the mallet in the operation theater (e.g. automated surgical impaction tools) or to modify the mallet (e.g. alternative tip material). Furthermore, it may provide guidance on the fixation of femurs in in vitro testing to mimic surgical reality.</div></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"125 ","pages":"Article 106530"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic response of soft tissue can be disregarded during femoral stem impaction\",\"authors\":\"Peter J. Schlieker , Frank Lampe , Johann Zwirner , Benjamin Ondruschka , Michael M. Morlock , Gerd Huber\",\"doi\":\"10.1016/j.clinbiomech.2025.106530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>In cementless total hip arthroplasty stems are inserted into the bone by mallet blows. Surgeons are not instructed to adjust the force of their blows to differences among patients especially with regard to weight. Whether this is linked to complications is yet unknown. This study investigated factors that could affect the mechanical behavior of the femur-tissue system.</div></div><div><h3>Methods</h3><div>Four cadavers were subject to two total hip arthroplasties by the same surgeon – one side via a lateral approach and the contralateral side via a direct anterior approach. A mass-spring-damper model was used to replicate the mechanical response of the femur-tissue system of the cadavers and make them comparable.</div></div><div><h3>Findings</h3><div>The mechanical response in terms of mass-spring-damper parameters differed between the approaches (lateral: 16.5 kg, 29.7 N/mm, 467.1 Ns/m; direct anterior: 11.5 kg, 41.7 N/mm, 553.0 Ns/m).</div></div><div><h3>Interpretation</h3><div>Common metal-on-metal mallet blows in surgery are very short and mostly excite high frequencies that are clearly above the natural frequency of the femur-tissue system. Those overcritical force impulses make the stem slide into the femur before the bone can even start moving. Hence, the individual mechanical behavior of the femur-tissue system can be disregarded provided that the force is applied with very short blows. This needs to be considered for any attempt to replace the mallet in the operation theater (e.g. automated surgical impaction tools) or to modify the mallet (e.g. alternative tip material). Furthermore, it may provide guidance on the fixation of femurs in in vitro testing to mimic surgical reality.</div></div>\",\"PeriodicalId\":50992,\"journal\":{\"name\":\"Clinical Biomechanics\",\"volume\":\"125 \",\"pages\":\"Article 106530\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268003325001032\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003325001032","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dynamic response of soft tissue can be disregarded during femoral stem impaction
Background
In cementless total hip arthroplasty stems are inserted into the bone by mallet blows. Surgeons are not instructed to adjust the force of their blows to differences among patients especially with regard to weight. Whether this is linked to complications is yet unknown. This study investigated factors that could affect the mechanical behavior of the femur-tissue system.
Methods
Four cadavers were subject to two total hip arthroplasties by the same surgeon – one side via a lateral approach and the contralateral side via a direct anterior approach. A mass-spring-damper model was used to replicate the mechanical response of the femur-tissue system of the cadavers and make them comparable.
Findings
The mechanical response in terms of mass-spring-damper parameters differed between the approaches (lateral: 16.5 kg, 29.7 N/mm, 467.1 Ns/m; direct anterior: 11.5 kg, 41.7 N/mm, 553.0 Ns/m).
Interpretation
Common metal-on-metal mallet blows in surgery are very short and mostly excite high frequencies that are clearly above the natural frequency of the femur-tissue system. Those overcritical force impulses make the stem slide into the femur before the bone can even start moving. Hence, the individual mechanical behavior of the femur-tissue system can be disregarded provided that the force is applied with very short blows. This needs to be considered for any attempt to replace the mallet in the operation theater (e.g. automated surgical impaction tools) or to modify the mallet (e.g. alternative tip material). Furthermore, it may provide guidance on the fixation of femurs in in vitro testing to mimic surgical reality.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.