Heng Kang , Nannan Ren , Yunjiang Wang , Pengfei Guan
{"title":"金属玻璃的硅微合金化调谐机制","authors":"Heng Kang , Nannan Ren , Yunjiang Wang , Pengfei Guan","doi":"10.1016/j.jnoncrysol.2025.123571","DOIUrl":null,"url":null,"abstract":"<div><div>Ductilizing amorphous metals without sacrificing strength is challenging due to unclear plasticity carriers. This study attempts to mimic the microalloying strategy of physical metallurgy in computer simulations by selectively pinning a small fraction of typical atoms in metallic glass, which is targeted to efficiently optimize the mechanical properties. We found that pinning atoms with high participation in the low-frequency vibrational modes are more effective in strengthening, attributing to a mechanism of scale-dependent pinning effect. By pinning only 2 % atoms in the unstable glassy samples, one can achieve shear modulus comparable to samples prepared with cooling rates that are eight orders of magnitude slower, highlighting the validity of microalloying over thermal treatment. Moreover, this microalloying approach not only control elastic properties, but also mitigates the failure mode of metallic glass. It demonstrates that restricting the motion of atoms in regions external to the shear band plays a critical role in inhibiting the propagation of the shear band.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"661 ","pages":"Article 123571"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning mechanics of metallic glasses via in silico microalloying\",\"authors\":\"Heng Kang , Nannan Ren , Yunjiang Wang , Pengfei Guan\",\"doi\":\"10.1016/j.jnoncrysol.2025.123571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ductilizing amorphous metals without sacrificing strength is challenging due to unclear plasticity carriers. This study attempts to mimic the microalloying strategy of physical metallurgy in computer simulations by selectively pinning a small fraction of typical atoms in metallic glass, which is targeted to efficiently optimize the mechanical properties. We found that pinning atoms with high participation in the low-frequency vibrational modes are more effective in strengthening, attributing to a mechanism of scale-dependent pinning effect. By pinning only 2 % atoms in the unstable glassy samples, one can achieve shear modulus comparable to samples prepared with cooling rates that are eight orders of magnitude slower, highlighting the validity of microalloying over thermal treatment. Moreover, this microalloying approach not only control elastic properties, but also mitigates the failure mode of metallic glass. It demonstrates that restricting the motion of atoms in regions external to the shear band plays a critical role in inhibiting the propagation of the shear band.</div></div>\",\"PeriodicalId\":16461,\"journal\":{\"name\":\"Journal of Non-crystalline Solids\",\"volume\":\"661 \",\"pages\":\"Article 123571\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-crystalline Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022309325001863\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309325001863","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Tuning mechanics of metallic glasses via in silico microalloying
Ductilizing amorphous metals without sacrificing strength is challenging due to unclear plasticity carriers. This study attempts to mimic the microalloying strategy of physical metallurgy in computer simulations by selectively pinning a small fraction of typical atoms in metallic glass, which is targeted to efficiently optimize the mechanical properties. We found that pinning atoms with high participation in the low-frequency vibrational modes are more effective in strengthening, attributing to a mechanism of scale-dependent pinning effect. By pinning only 2 % atoms in the unstable glassy samples, one can achieve shear modulus comparable to samples prepared with cooling rates that are eight orders of magnitude slower, highlighting the validity of microalloying over thermal treatment. Moreover, this microalloying approach not only control elastic properties, but also mitigates the failure mode of metallic glass. It demonstrates that restricting the motion of atoms in regions external to the shear band plays a critical role in inhibiting the propagation of the shear band.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.