Heba Banat , Ildikó Csóka , Fruzsina Kun-Szabó , Gergely H. Fodor , Petra Somogyi , Ferenc Peták , Petra Party , Anita Sztojkov-Ivanov , Eszter Ducza , Róbert Berkecz , Ilona Gróf , Mária A. Deli , Rita Ambrus
{"title":"甘露醇-亮氨酸在纳米晶体凝聚体中的协同作用增强了吸入酮洛芬的全身递送:卵清蛋白致敏大鼠的药代动力学和安全性","authors":"Heba Banat , Ildikó Csóka , Fruzsina Kun-Szabó , Gergely H. Fodor , Petra Somogyi , Ferenc Peták , Petra Party , Anita Sztojkov-Ivanov , Eszter Ducza , Róbert Berkecz , Ilona Gróf , Mária A. Deli , Rita Ambrus","doi":"10.1016/j.ijpharm.2025.125610","DOIUrl":null,"url":null,"abstract":"<div><div>Pulmonary administration offers a promising needle-free approach for systemic delivery of nonsteroidal anti-inflammatory drugs (NSAIDs), improving bioavailability and reducing required doses. While mannitol and leucine are widely used in inhalation formulations, their potential to enhance systemic drug delivery via the pulmonary route remains largely unexplored. This study utilizes the nanocrystal agglomerates (NCAs) approach to develop an inhalable NSAID formulation, with ketoprofen (KTP) as a model drug. Wet media milling and nano spray drying were employed for NCA fabrication, and the roles of mannitol and leucine were evaluated individually and in combination. Notably, their combination exhibited synergy, overcoming limitations observed with individual excipients. Mannitol-based sample (K1M) reduced aerosol performance by increasing the mass median aerodynamic diameter (MMAD) to 4.5 µm, whereas leucine-based sample (K1L) improved aerosolization but resulted in a low MMAD (<1 µm), suggesting a high tendency for exhalation. The combined mannitol-leucine formulation (K1ML) achieved optimal aerosol performance, balancing dispersibility and controlled deposition. K1ML also exhibited the fastest drug release (99 % in 5 min) and enhanced permeability across the alveolar barrier while maintaining biocompatibility. Pharmacokinetic analysis confirmed that inhaled K1ML provided superior bioavailability (AUC 73 µg·h/mL) compared to oral KTP nanosuspension (42 µg·h/mL) and raw KTP (9 µg·h/mL). Nonetheless, prolonged inhalation in asthmatic models (ovalbumin-sensitised rats) impaired pulmonary function, emphasizing the need for dose optimization. These findings demonstrate that the mannitol-leucine combination in NCAs enhances systemic NSAID delivery, optimizing both aerosol performance and bioavailability. Future studies should refine dosing strategies to ensure long-term safety and clinical feasibility.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"676 ","pages":"Article 125610"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mannitol-leucine synergy in nanocrystal agglomerates for enhanced systemic delivery of inhaled ketoprofen: Pharmacokinetics and safety in ovalbumin-sensitized rats\",\"authors\":\"Heba Banat , Ildikó Csóka , Fruzsina Kun-Szabó , Gergely H. Fodor , Petra Somogyi , Ferenc Peták , Petra Party , Anita Sztojkov-Ivanov , Eszter Ducza , Róbert Berkecz , Ilona Gróf , Mária A. Deli , Rita Ambrus\",\"doi\":\"10.1016/j.ijpharm.2025.125610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pulmonary administration offers a promising needle-free approach for systemic delivery of nonsteroidal anti-inflammatory drugs (NSAIDs), improving bioavailability and reducing required doses. While mannitol and leucine are widely used in inhalation formulations, their potential to enhance systemic drug delivery via the pulmonary route remains largely unexplored. This study utilizes the nanocrystal agglomerates (NCAs) approach to develop an inhalable NSAID formulation, with ketoprofen (KTP) as a model drug. Wet media milling and nano spray drying were employed for NCA fabrication, and the roles of mannitol and leucine were evaluated individually and in combination. Notably, their combination exhibited synergy, overcoming limitations observed with individual excipients. Mannitol-based sample (K1M) reduced aerosol performance by increasing the mass median aerodynamic diameter (MMAD) to 4.5 µm, whereas leucine-based sample (K1L) improved aerosolization but resulted in a low MMAD (<1 µm), suggesting a high tendency for exhalation. The combined mannitol-leucine formulation (K1ML) achieved optimal aerosol performance, balancing dispersibility and controlled deposition. K1ML also exhibited the fastest drug release (99 % in 5 min) and enhanced permeability across the alveolar barrier while maintaining biocompatibility. Pharmacokinetic analysis confirmed that inhaled K1ML provided superior bioavailability (AUC 73 µg·h/mL) compared to oral KTP nanosuspension (42 µg·h/mL) and raw KTP (9 µg·h/mL). Nonetheless, prolonged inhalation in asthmatic models (ovalbumin-sensitised rats) impaired pulmonary function, emphasizing the need for dose optimization. These findings demonstrate that the mannitol-leucine combination in NCAs enhances systemic NSAID delivery, optimizing both aerosol performance and bioavailability. Future studies should refine dosing strategies to ensure long-term safety and clinical feasibility.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"676 \",\"pages\":\"Article 125610\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517325004478\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325004478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Mannitol-leucine synergy in nanocrystal agglomerates for enhanced systemic delivery of inhaled ketoprofen: Pharmacokinetics and safety in ovalbumin-sensitized rats
Pulmonary administration offers a promising needle-free approach for systemic delivery of nonsteroidal anti-inflammatory drugs (NSAIDs), improving bioavailability and reducing required doses. While mannitol and leucine are widely used in inhalation formulations, their potential to enhance systemic drug delivery via the pulmonary route remains largely unexplored. This study utilizes the nanocrystal agglomerates (NCAs) approach to develop an inhalable NSAID formulation, with ketoprofen (KTP) as a model drug. Wet media milling and nano spray drying were employed for NCA fabrication, and the roles of mannitol and leucine were evaluated individually and in combination. Notably, their combination exhibited synergy, overcoming limitations observed with individual excipients. Mannitol-based sample (K1M) reduced aerosol performance by increasing the mass median aerodynamic diameter (MMAD) to 4.5 µm, whereas leucine-based sample (K1L) improved aerosolization but resulted in a low MMAD (<1 µm), suggesting a high tendency for exhalation. The combined mannitol-leucine formulation (K1ML) achieved optimal aerosol performance, balancing dispersibility and controlled deposition. K1ML also exhibited the fastest drug release (99 % in 5 min) and enhanced permeability across the alveolar barrier while maintaining biocompatibility. Pharmacokinetic analysis confirmed that inhaled K1ML provided superior bioavailability (AUC 73 µg·h/mL) compared to oral KTP nanosuspension (42 µg·h/mL) and raw KTP (9 µg·h/mL). Nonetheless, prolonged inhalation in asthmatic models (ovalbumin-sensitised rats) impaired pulmonary function, emphasizing the need for dose optimization. These findings demonstrate that the mannitol-leucine combination in NCAs enhances systemic NSAID delivery, optimizing both aerosol performance and bioavailability. Future studies should refine dosing strategies to ensure long-term safety and clinical feasibility.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.