细菌纤维素/Ti3C2Tx MXene混合纤维用于高性能柔性纤维形超级电容器

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Zhang , Shaoyi Wu , Yusen Wang , Xiangxiang Pi , Diwei Gu , Shenao Zhang , Jian Xu , Kangxin Qi , Wangyang Lu
{"title":"细菌纤维素/Ti3C2Tx MXene混合纤维用于高性能柔性纤维形超级电容器","authors":"Yang Zhang ,&nbsp;Shaoyi Wu ,&nbsp;Yusen Wang ,&nbsp;Xiangxiang Pi ,&nbsp;Diwei Gu ,&nbsp;Shenao Zhang ,&nbsp;Jian Xu ,&nbsp;Kangxin Qi ,&nbsp;Wangyang Lu","doi":"10.1016/j.matlet.2025.138627","DOIUrl":null,"url":null,"abstract":"<div><div>Effective design and construction of robust, flexible and highly electrochemical fiber shaped electrode with hierarchical nanostructures are critical for wearable energy storage device. Here, bacterial cellulose (BC) intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (BCT) fiber was fabricated by wet spinning method for fiber shaped supercapacitors (FSC). BC can significantly impede the self-restacking of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> flakes causing a porous structure and connect the adjacent Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> sheets constructing high mechanical strength. As a result, the BCT fiber provides high capacitance and good rate performance in three-electrode system. Moreover, the assembled symmetrical FSC based on BCT fiber presents favorable mass capacitance and excellent energy density, demonstrating a bright future in smart wearable system.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"394 ","pages":"Article 138627"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial cellulose/Ti3C2Tx MXene hybrid fiber for high-performance flexible fiber-shaped supercapacitors\",\"authors\":\"Yang Zhang ,&nbsp;Shaoyi Wu ,&nbsp;Yusen Wang ,&nbsp;Xiangxiang Pi ,&nbsp;Diwei Gu ,&nbsp;Shenao Zhang ,&nbsp;Jian Xu ,&nbsp;Kangxin Qi ,&nbsp;Wangyang Lu\",\"doi\":\"10.1016/j.matlet.2025.138627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective design and construction of robust, flexible and highly electrochemical fiber shaped electrode with hierarchical nanostructures are critical for wearable energy storage device. Here, bacterial cellulose (BC) intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (BCT) fiber was fabricated by wet spinning method for fiber shaped supercapacitors (FSC). BC can significantly impede the self-restacking of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> flakes causing a porous structure and connect the adjacent Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> sheets constructing high mechanical strength. As a result, the BCT fiber provides high capacitance and good rate performance in three-electrode system. Moreover, the assembled symmetrical FSC based on BCT fiber presents favorable mass capacitance and excellent energy density, demonstrating a bright future in smart wearable system.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"394 \",\"pages\":\"Article 138627\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25006561\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25006561","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有效设计和构建坚固、柔性、高电化学性能的分层纳米结构纤维电极是可穿戴储能装置的关键。本文采用湿纺丝法制备了细菌纤维素(BC)插层Ti3C2Tx (BCT)纤维,用于纤维形超级电容器(FSC)。BC可以显著阻碍Ti3C2Tx薄片的自堆积,形成多孔结构,并连接相邻的Ti3C2Tx薄片,形成较高的机械强度。因此,BCT光纤在三电极系统中具有高电容和良好的速率性能。此外,基于BCT光纤的组装对称FSC具有良好的质量电容和优异的能量密度,在智能可穿戴系统中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial cellulose/Ti3C2Tx MXene hybrid fiber for high-performance flexible fiber-shaped supercapacitors
Effective design and construction of robust, flexible and highly electrochemical fiber shaped electrode with hierarchical nanostructures are critical for wearable energy storage device. Here, bacterial cellulose (BC) intercalated Ti3C2Tx (BCT) fiber was fabricated by wet spinning method for fiber shaped supercapacitors (FSC). BC can significantly impede the self-restacking of Ti3C2Tx flakes causing a porous structure and connect the adjacent Ti3C2Tx sheets constructing high mechanical strength. As a result, the BCT fiber provides high capacitance and good rate performance in three-electrode system. Moreover, the assembled symmetrical FSC based on BCT fiber presents favorable mass capacitance and excellent energy density, demonstrating a bright future in smart wearable system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信