(1+1)-耗散Westervelt方程的最优李子代数系统和修正简单方程法的精确解

Q1 Mathematics
Theko M. Sekhesa , Ngaka J. Nchejane , Wetsi D. Poka , Kalebe M. Kalebe
{"title":"(1+1)-耗散Westervelt方程的最优李子代数系统和修正简单方程法的精确解","authors":"Theko M. Sekhesa ,&nbsp;Ngaka J. Nchejane ,&nbsp;Wetsi D. Poka ,&nbsp;Kalebe M. Kalebe","doi":"10.1016/j.padiff.2025.101178","DOIUrl":null,"url":null,"abstract":"<div><div>The Westervelt model is a non-linear partial differential equation that models sound propagation and its effects in non-linear media. In this paper, we obtain exact invariant solutions of the (1+1)-dimensional dissipative Westervelt equation using Lie symmetry analysis with modified simple equation method. By utilizing an optimal system of Lie sub-algebras, the model is reduced to an ordinary differential equation. The modified simple equation method leverages that the studied model admits the travelling wave solution, i.e., <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>g</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow></mrow></math></span>, where, <span><math><mrow><mi>φ</mi><mo>=</mo><mi>x</mi><mo>−</mo><mi>α</mi><mi>t</mi></mrow></math></span>, to obtain solitary wave solutions. The constructed solutions have applications in high-intensity focused ultrasound (e.g., cancer detection) as the different parameters are varied.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101178"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact solutions of the (1+1)-dissipative Westervelt equation using an optimal system of Lie sub-algebras and modified simple equation method\",\"authors\":\"Theko M. Sekhesa ,&nbsp;Ngaka J. Nchejane ,&nbsp;Wetsi D. Poka ,&nbsp;Kalebe M. Kalebe\",\"doi\":\"10.1016/j.padiff.2025.101178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Westervelt model is a non-linear partial differential equation that models sound propagation and its effects in non-linear media. In this paper, we obtain exact invariant solutions of the (1+1)-dimensional dissipative Westervelt equation using Lie symmetry analysis with modified simple equation method. By utilizing an optimal system of Lie sub-algebras, the model is reduced to an ordinary differential equation. The modified simple equation method leverages that the studied model admits the travelling wave solution, i.e., <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>g</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow></mrow></math></span>, where, <span><math><mrow><mi>φ</mi><mo>=</mo><mi>x</mi><mo>−</mo><mi>α</mi><mi>t</mi></mrow></math></span>, to obtain solitary wave solutions. The constructed solutions have applications in high-intensity focused ultrasound (e.g., cancer detection) as the different parameters are varied.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101178\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

韦斯特维尔特模型是一个非线性偏微分方程,用于模拟声音在非线性介质中的传播及其影响。本文用改进的简单方程法利用李对称分析,得到了(1+1)维耗散Westervelt方程的精确不变解。利用李子代数的最优系统,将模型简化为常微分方程。改进的简单方程法利用所研究的模型允许行波解,即u(x,t)=g(φ),其中φ=x - αt,得到孤波解。由于不同的参数不同,构建的溶液在高强度聚焦超声(例如,癌症检测)中有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact solutions of the (1+1)-dissipative Westervelt equation using an optimal system of Lie sub-algebras and modified simple equation method
The Westervelt model is a non-linear partial differential equation that models sound propagation and its effects in non-linear media. In this paper, we obtain exact invariant solutions of the (1+1)-dimensional dissipative Westervelt equation using Lie symmetry analysis with modified simple equation method. By utilizing an optimal system of Lie sub-algebras, the model is reduced to an ordinary differential equation. The modified simple equation method leverages that the studied model admits the travelling wave solution, i.e., u(x,t)=g(φ), where, φ=xαt, to obtain solitary wave solutions. The constructed solutions have applications in high-intensity focused ultrasound (e.g., cancer detection) as the different parameters are varied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信