Maria Adelaide Palmieri , Lisa Pia Agosti , Maria Bove , Vladyslav Sikora , Martina Santoro , Paolo Tucci , Stefania Schiavone , Luigia Trabace , Maria Grazia Morgese
{"title":"成年期补充N-3 PUFA可调节雌性大鼠饮食诱导的抑郁样表型","authors":"Maria Adelaide Palmieri , Lisa Pia Agosti , Maria Bove , Vladyslav Sikora , Martina Santoro , Paolo Tucci , Stefania Schiavone , Luigia Trabace , Maria Grazia Morgese","doi":"10.1016/j.pnpbp.2025.111362","DOIUrl":null,"url":null,"abstract":"<div><div>Low consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) during development has been linked to increased risk of developing depressive symptoms. The present study assesses the influence of chronic n-3 PUFA supplementation in a rodent model of depressive-like phenotype induced by long-life depletion of n-3 PUFA in the diet. These behavioural and biological consequences already start to become apparent in adolescence and tend to worsen if the n-3 PUFA deficiency is prolonged. Here, we investigated whether the reintroduction of n-3 PUFA at a later stage of development can reverse these alterations. Thus, female Wistar rats, subjected to a diet low in n-3 PUFA since fetal stage, were re-exposed to n-3 PUFA from week 8 of life until week 16. N-3 PUFA enriched diet improved these behavioural and neurochemical deficits by restoring neurotransmitter levels. Levels of nerve growth factor in prefrontal cortex (PFC), brain-derived neurotrophic factor and synaptophysin in PFC and hippocampus were significantly enhanced, suggesting that the n-3 PUFA supplementation promotes synaptic plasticity. However, Amyloid oligomers and Amyloid-beta precursor protein levels were only partially recovered, while improving calmodulin-dependent protein kinase II levels in PFC. Finally, n-3 PUFA replenishment reduced plasma levels of 3-hydroxykynurenine, a pro-oxidant metabolite of the tryptophan/kynurenine pathway, but could not restore serotonin amount nor kynurenine/tryptophan ratio. In conclusion, our data support the hypothesis that the reintroduction of n-3 PUFA at a late phase of development can provide significant benefits to the CNS, although some long-term neurotoxic effects may not be fully reversible.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"139 ","pages":"Article 111362"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-3 PUFA supplementation in adulthood modulates diet-induced depressive-like phenotype in female rats\",\"authors\":\"Maria Adelaide Palmieri , Lisa Pia Agosti , Maria Bove , Vladyslav Sikora , Martina Santoro , Paolo Tucci , Stefania Schiavone , Luigia Trabace , Maria Grazia Morgese\",\"doi\":\"10.1016/j.pnpbp.2025.111362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) during development has been linked to increased risk of developing depressive symptoms. The present study assesses the influence of chronic n-3 PUFA supplementation in a rodent model of depressive-like phenotype induced by long-life depletion of n-3 PUFA in the diet. These behavioural and biological consequences already start to become apparent in adolescence and tend to worsen if the n-3 PUFA deficiency is prolonged. Here, we investigated whether the reintroduction of n-3 PUFA at a later stage of development can reverse these alterations. Thus, female Wistar rats, subjected to a diet low in n-3 PUFA since fetal stage, were re-exposed to n-3 PUFA from week 8 of life until week 16. N-3 PUFA enriched diet improved these behavioural and neurochemical deficits by restoring neurotransmitter levels. Levels of nerve growth factor in prefrontal cortex (PFC), brain-derived neurotrophic factor and synaptophysin in PFC and hippocampus were significantly enhanced, suggesting that the n-3 PUFA supplementation promotes synaptic plasticity. However, Amyloid oligomers and Amyloid-beta precursor protein levels were only partially recovered, while improving calmodulin-dependent protein kinase II levels in PFC. Finally, n-3 PUFA replenishment reduced plasma levels of 3-hydroxykynurenine, a pro-oxidant metabolite of the tryptophan/kynurenine pathway, but could not restore serotonin amount nor kynurenine/tryptophan ratio. In conclusion, our data support the hypothesis that the reintroduction of n-3 PUFA at a late phase of development can provide significant benefits to the CNS, although some long-term neurotoxic effects may not be fully reversible.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"139 \",\"pages\":\"Article 111362\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584625001162\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625001162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
N-3 PUFA supplementation in adulthood modulates diet-induced depressive-like phenotype in female rats
Low consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) during development has been linked to increased risk of developing depressive symptoms. The present study assesses the influence of chronic n-3 PUFA supplementation in a rodent model of depressive-like phenotype induced by long-life depletion of n-3 PUFA in the diet. These behavioural and biological consequences already start to become apparent in adolescence and tend to worsen if the n-3 PUFA deficiency is prolonged. Here, we investigated whether the reintroduction of n-3 PUFA at a later stage of development can reverse these alterations. Thus, female Wistar rats, subjected to a diet low in n-3 PUFA since fetal stage, were re-exposed to n-3 PUFA from week 8 of life until week 16. N-3 PUFA enriched diet improved these behavioural and neurochemical deficits by restoring neurotransmitter levels. Levels of nerve growth factor in prefrontal cortex (PFC), brain-derived neurotrophic factor and synaptophysin in PFC and hippocampus were significantly enhanced, suggesting that the n-3 PUFA supplementation promotes synaptic plasticity. However, Amyloid oligomers and Amyloid-beta precursor protein levels were only partially recovered, while improving calmodulin-dependent protein kinase II levels in PFC. Finally, n-3 PUFA replenishment reduced plasma levels of 3-hydroxykynurenine, a pro-oxidant metabolite of the tryptophan/kynurenine pathway, but could not restore serotonin amount nor kynurenine/tryptophan ratio. In conclusion, our data support the hypothesis that the reintroduction of n-3 PUFA at a late phase of development can provide significant benefits to the CNS, although some long-term neurotoxic effects may not be fully reversible.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.