{"title":"创建非互反柔性机构的拓扑优化:数值和实验研究","authors":"Vahid Shobeiri , Yi Min Xie","doi":"10.1016/j.eml.2025.102345","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a topology optimization technique is developed based on the bi-directional evolutionary structural optimization (BESO) method for the creation of nonreciprocal complaint mechanisms (NCMs). The internal contact surface model is proposed as a simple and innovative approach to making complaint mechanism systems nonreciprocal. The design problem is formulated as maximizing the flexibility of NCMs with a desired level of nonreciprocity subject to a volume constraint. Based on the BESO method, a novel type of NCMs is developed with potential applications in various engineering fields. The topology optimization of a nonreciprocal inverter mechanism is studied, and the effectiveness of the proposed method is verified through experiments. The numerical and experimental results indicate that topologically optimized designs of NCMs and their asymmetric deformation can be significantly controlled by the degree of nonreciprocity. The findings from this study can be used as a basis for designing a wide range of nonreciprocal structural systems.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102345"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization for creating nonreciprocal compliant mechanisms: Numerical and experimental investigations\",\"authors\":\"Vahid Shobeiri , Yi Min Xie\",\"doi\":\"10.1016/j.eml.2025.102345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a topology optimization technique is developed based on the bi-directional evolutionary structural optimization (BESO) method for the creation of nonreciprocal complaint mechanisms (NCMs). The internal contact surface model is proposed as a simple and innovative approach to making complaint mechanism systems nonreciprocal. The design problem is formulated as maximizing the flexibility of NCMs with a desired level of nonreciprocity subject to a volume constraint. Based on the BESO method, a novel type of NCMs is developed with potential applications in various engineering fields. The topology optimization of a nonreciprocal inverter mechanism is studied, and the effectiveness of the proposed method is verified through experiments. The numerical and experimental results indicate that topologically optimized designs of NCMs and their asymmetric deformation can be significantly controlled by the degree of nonreciprocity. The findings from this study can be used as a basis for designing a wide range of nonreciprocal structural systems.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"77 \",\"pages\":\"Article 102345\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431625000574\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000574","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topology optimization for creating nonreciprocal compliant mechanisms: Numerical and experimental investigations
In this study, a topology optimization technique is developed based on the bi-directional evolutionary structural optimization (BESO) method for the creation of nonreciprocal complaint mechanisms (NCMs). The internal contact surface model is proposed as a simple and innovative approach to making complaint mechanism systems nonreciprocal. The design problem is formulated as maximizing the flexibility of NCMs with a desired level of nonreciprocity subject to a volume constraint. Based on the BESO method, a novel type of NCMs is developed with potential applications in various engineering fields. The topology optimization of a nonreciprocal inverter mechanism is studied, and the effectiveness of the proposed method is verified through experiments. The numerical and experimental results indicate that topologically optimized designs of NCMs and their asymmetric deformation can be significantly controlled by the degree of nonreciprocity. The findings from this study can be used as a basis for designing a wide range of nonreciprocal structural systems.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.