创建非互反柔性机构的拓扑优化:数值和实验研究

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vahid Shobeiri , Yi Min Xie
{"title":"创建非互反柔性机构的拓扑优化:数值和实验研究","authors":"Vahid Shobeiri ,&nbsp;Yi Min Xie","doi":"10.1016/j.eml.2025.102345","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a topology optimization technique is developed based on the bi-directional evolutionary structural optimization (BESO) method for the creation of nonreciprocal complaint mechanisms (NCMs). The internal contact surface model is proposed as a simple and innovative approach to making complaint mechanism systems nonreciprocal. The design problem is formulated as maximizing the flexibility of NCMs with a desired level of nonreciprocity subject to a volume constraint. Based on the BESO method, a novel type of NCMs is developed with potential applications in various engineering fields. The topology optimization of a nonreciprocal inverter mechanism is studied, and the effectiveness of the proposed method is verified through experiments. The numerical and experimental results indicate that topologically optimized designs of NCMs and their asymmetric deformation can be significantly controlled by the degree of nonreciprocity. The findings from this study can be used as a basis for designing a wide range of nonreciprocal structural systems.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"77 ","pages":"Article 102345"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization for creating nonreciprocal compliant mechanisms: Numerical and experimental investigations\",\"authors\":\"Vahid Shobeiri ,&nbsp;Yi Min Xie\",\"doi\":\"10.1016/j.eml.2025.102345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a topology optimization technique is developed based on the bi-directional evolutionary structural optimization (BESO) method for the creation of nonreciprocal complaint mechanisms (NCMs). The internal contact surface model is proposed as a simple and innovative approach to making complaint mechanism systems nonreciprocal. The design problem is formulated as maximizing the flexibility of NCMs with a desired level of nonreciprocity subject to a volume constraint. Based on the BESO method, a novel type of NCMs is developed with potential applications in various engineering fields. The topology optimization of a nonreciprocal inverter mechanism is studied, and the effectiveness of the proposed method is verified through experiments. The numerical and experimental results indicate that topologically optimized designs of NCMs and their asymmetric deformation can be significantly controlled by the degree of nonreciprocity. The findings from this study can be used as a basis for designing a wide range of nonreciprocal structural systems.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"77 \",\"pages\":\"Article 102345\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431625000574\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000574","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于双向进化结构优化(BESO)方法的拓扑优化技术,用于非互反投诉机制(ncm)的创建。内部接触面模型是使投诉机制系统非互反的一种简单而创新的方法。设计问题被表述为最大限度地提高ncm的灵活性,使其具有受体积约束的非互易性的期望水平。基于BESO方法,开发了一种新型的ncm,在各个工程领域具有潜在的应用前景。研究了一种非互易逆变器机构的拓扑优化问题,并通过实验验证了该方法的有效性。数值和实验结果表明,非互易程度可以有效地控制数控加工的拓扑优化设计及其不对称变形。本研究的结果可以作为设计大范围非互易结构系统的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology optimization for creating nonreciprocal compliant mechanisms: Numerical and experimental investigations
In this study, a topology optimization technique is developed based on the bi-directional evolutionary structural optimization (BESO) method for the creation of nonreciprocal complaint mechanisms (NCMs). The internal contact surface model is proposed as a simple and innovative approach to making complaint mechanism systems nonreciprocal. The design problem is formulated as maximizing the flexibility of NCMs with a desired level of nonreciprocity subject to a volume constraint. Based on the BESO method, a novel type of NCMs is developed with potential applications in various engineering fields. The topology optimization of a nonreciprocal inverter mechanism is studied, and the effectiveness of the proposed method is verified through experiments. The numerical and experimental results indicate that topologically optimized designs of NCMs and their asymmetric deformation can be significantly controlled by the degree of nonreciprocity. The findings from this study can be used as a basis for designing a wide range of nonreciprocal structural systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信