用于长期确定性和概率性电力负荷预测的多粒度自变换器

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Yang , Yuchao Gao , Hu Zhou , Jinran Wu , Shangce Gao , You-Gan Wang
{"title":"用于长期确定性和概率性电力负荷预测的多粒度自变换器","authors":"Yang Yang ,&nbsp;Yuchao Gao ,&nbsp;Hu Zhou ,&nbsp;Jinran Wu ,&nbsp;Shangce Gao ,&nbsp;You-Gan Wang","doi":"10.1016/j.neunet.2025.107493","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term power load forecasting is critical for power system planning but is constrained by intricate temporal patterns. Transformer-based models emphasize modeling long- and short-term dependencies yet encounter limitations from complexity and parameter overhead. This paper introduces a novel Multi-Granularity Autoformer (MG-Autoformer) for long-term load forecasting. The model leverages a Multi-Granularity Auto-Correlation Attention Mechanism (MG-ACAM) to effectively capture fine-grained and coarse-grained temporal dependencies, enabling accurate modeling of short-term fluctuations and long-term trends. To enhance efficiency, a shared query–key (Q–K) mechanism is utilized to identify key temporal patterns across multiple resolutions and reduce model complexity. To address uncertainty in power load forecasting, the model incorporates a quantile loss function, enabling probabilistic predictions while quantifying uncertainty. Extensive experiments on benchmark datasets from Portugal, Australia, America, and ISO New England demonstrate the superior performance of the proposed MG-Autoformer in long-term power load point and probabilistic forecasting tasks.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107493"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Granularity Autoformer for long-term deterministic and probabilistic power load forecasting\",\"authors\":\"Yang Yang ,&nbsp;Yuchao Gao ,&nbsp;Hu Zhou ,&nbsp;Jinran Wu ,&nbsp;Shangce Gao ,&nbsp;You-Gan Wang\",\"doi\":\"10.1016/j.neunet.2025.107493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Long-term power load forecasting is critical for power system planning but is constrained by intricate temporal patterns. Transformer-based models emphasize modeling long- and short-term dependencies yet encounter limitations from complexity and parameter overhead. This paper introduces a novel Multi-Granularity Autoformer (MG-Autoformer) for long-term load forecasting. The model leverages a Multi-Granularity Auto-Correlation Attention Mechanism (MG-ACAM) to effectively capture fine-grained and coarse-grained temporal dependencies, enabling accurate modeling of short-term fluctuations and long-term trends. To enhance efficiency, a shared query–key (Q–K) mechanism is utilized to identify key temporal patterns across multiple resolutions and reduce model complexity. To address uncertainty in power load forecasting, the model incorporates a quantile loss function, enabling probabilistic predictions while quantifying uncertainty. Extensive experiments on benchmark datasets from Portugal, Australia, America, and ISO New England demonstrate the superior performance of the proposed MG-Autoformer in long-term power load point and probabilistic forecasting tasks.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107493\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025003727\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003727","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

长期电力负荷预测是电力系统规划的重要内容,但受复杂时间模式的制约。基于变压器的模型强调对长期和短期依赖关系的建模,但会遇到复杂性和参数开销的限制。介绍了一种用于长期负荷预测的新型多粒度自耦器(MG-Autoformer)。该模型利用多粒度自相关注意机制(MG-ACAM)来有效捕获细粒度和粗粒度的时间依赖性,从而实现对短期波动和长期趋势的准确建模。为了提高效率,使用共享查询键(Q-K)机制来识别跨多个分辨率的键时间模式并降低模型复杂性。为了解决电力负荷预测中的不确定性,该模型结合了分位数损失函数,在量化不确定性的同时实现了概率预测。在葡萄牙、澳大利亚、美国和ISO新英格兰的基准数据集上进行的大量实验表明,所提出的MG-Autoformer在长期电力负荷点和概率预测任务中具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Granularity Autoformer for long-term deterministic and probabilistic power load forecasting
Long-term power load forecasting is critical for power system planning but is constrained by intricate temporal patterns. Transformer-based models emphasize modeling long- and short-term dependencies yet encounter limitations from complexity and parameter overhead. This paper introduces a novel Multi-Granularity Autoformer (MG-Autoformer) for long-term load forecasting. The model leverages a Multi-Granularity Auto-Correlation Attention Mechanism (MG-ACAM) to effectively capture fine-grained and coarse-grained temporal dependencies, enabling accurate modeling of short-term fluctuations and long-term trends. To enhance efficiency, a shared query–key (Q–K) mechanism is utilized to identify key temporal patterns across multiple resolutions and reduce model complexity. To address uncertainty in power load forecasting, the model incorporates a quantile loss function, enabling probabilistic predictions while quantifying uncertainty. Extensive experiments on benchmark datasets from Portugal, Australia, America, and ISO New England demonstrate the superior performance of the proposed MG-Autoformer in long-term power load point and probabilistic forecasting tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信