{"title":"利用改进的标量辅助变量(iSAV)方法求解各向异性相场晶体模型的高效、精确的数值格式","authors":"Xiaoli Wang, Zhengguang Liu","doi":"10.1016/j.cnsns.2025.108875","DOIUrl":null,"url":null,"abstract":"<div><div>The two-dimensional anisotropic phase field crystal (APFC) model is a sixth-order nonlinear parabolic equation that can be used to simulate various phenomena such as epitaxial growth, material hardness, and phase transition. The scalar auxiliary variable method (SAV) is a common method to solve various nonlinear dissipative systems, and the improved SAV (iSAV) method is not only completely linear, but also strictly guarantees the original dissipation law. In this paper, we construct several efficient, accurate linear and original energy-stable numerical schemes of the APFC model based on the iSAV method. Firstly, a first-order iSAV scheme is considered to keep the original energy stability for the APFC model. Secondly, we propose a new stabilized iSAV scheme and give its rigorous energy stability analysis to keep its original dissipation law. Finally, several interesting numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed methods.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"148 ","pages":"Article 108875"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient and accurate numerical schemes for the anisotropic phase field crystal models by using the improved scalar auxiliary variable (iSAV) approach\",\"authors\":\"Xiaoli Wang, Zhengguang Liu\",\"doi\":\"10.1016/j.cnsns.2025.108875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The two-dimensional anisotropic phase field crystal (APFC) model is a sixth-order nonlinear parabolic equation that can be used to simulate various phenomena such as epitaxial growth, material hardness, and phase transition. The scalar auxiliary variable method (SAV) is a common method to solve various nonlinear dissipative systems, and the improved SAV (iSAV) method is not only completely linear, but also strictly guarantees the original dissipation law. In this paper, we construct several efficient, accurate linear and original energy-stable numerical schemes of the APFC model based on the iSAV method. Firstly, a first-order iSAV scheme is considered to keep the original energy stability for the APFC model. Secondly, we propose a new stabilized iSAV scheme and give its rigorous energy stability analysis to keep its original dissipation law. Finally, several interesting numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed methods.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"148 \",\"pages\":\"Article 108875\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425002862\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425002862","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Highly efficient and accurate numerical schemes for the anisotropic phase field crystal models by using the improved scalar auxiliary variable (iSAV) approach
The two-dimensional anisotropic phase field crystal (APFC) model is a sixth-order nonlinear parabolic equation that can be used to simulate various phenomena such as epitaxial growth, material hardness, and phase transition. The scalar auxiliary variable method (SAV) is a common method to solve various nonlinear dissipative systems, and the improved SAV (iSAV) method is not only completely linear, but also strictly guarantees the original dissipation law. In this paper, we construct several efficient, accurate linear and original energy-stable numerical schemes of the APFC model based on the iSAV method. Firstly, a first-order iSAV scheme is considered to keep the original energy stability for the APFC model. Secondly, we propose a new stabilized iSAV scheme and give its rigorous energy stability analysis to keep its original dissipation law. Finally, several interesting numerical examples are presented to demonstrate the accuracy and effectiveness of the proposed methods.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.