ZnO和ZnMgO薄膜的温度依赖性电性能:传导机制分析

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Victor Colas , Krishna Lone , Wafae El Berjali , Sidi Ould Saad Hamady , Nur Atiqah Hamzah , Way Foong Lim , Sha Shiong Ng
{"title":"ZnO和ZnMgO薄膜的温度依赖性电性能:传导机制分析","authors":"Victor Colas ,&nbsp;Krishna Lone ,&nbsp;Wafae El Berjali ,&nbsp;Sidi Ould Saad Hamady ,&nbsp;Nur Atiqah Hamzah ,&nbsp;Way Foong Lim ,&nbsp;Sha Shiong Ng","doi":"10.1016/j.mseb.2025.118325","DOIUrl":null,"url":null,"abstract":"<div><div>ZnMgO has gained significant attention as a sustainable and cost-effective material for solar cells and sensors. This study investigates the conduction mechanisms in ZnO and ZnMgO thin films, covering a broad temperature range (40 K-340 K). Electrical characterization reveals a transition in ZnO from Mott variable-range hopping at low temperatures, characterized by a localized donor state density of <span><math><mrow><mi>2.3</mi><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>21</mn></mrow></msup><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><msup><mrow><mi>eV</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and a localization length of 1.8 nm, to thermally activated conduction at higher temperatures. In ZnMgO, the incorporation of Mg leads to a higher activation energy (69.0 meV) compared to ZnO (48.3 meV), indicating increased carrier localization. This enhanced localization is further evidenced by the emergence of the nearest-neighbor hopping mechanism at low temperatures, with an activation energy of 2.8 meV. Additionally, optical characterization reveals a bandgap widening and an increase in Urbach energy, correlating with the observed shift in conduction mechanisms.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118325"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent electrical properties of ZnO and ZnMgO thin films: Analysis of conduction mechanisms\",\"authors\":\"Victor Colas ,&nbsp;Krishna Lone ,&nbsp;Wafae El Berjali ,&nbsp;Sidi Ould Saad Hamady ,&nbsp;Nur Atiqah Hamzah ,&nbsp;Way Foong Lim ,&nbsp;Sha Shiong Ng\",\"doi\":\"10.1016/j.mseb.2025.118325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ZnMgO has gained significant attention as a sustainable and cost-effective material for solar cells and sensors. This study investigates the conduction mechanisms in ZnO and ZnMgO thin films, covering a broad temperature range (40 K-340 K). Electrical characterization reveals a transition in ZnO from Mott variable-range hopping at low temperatures, characterized by a localized donor state density of <span><math><mrow><mi>2.3</mi><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>21</mn></mrow></msup><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><msup><mrow><mi>eV</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and a localization length of 1.8 nm, to thermally activated conduction at higher temperatures. In ZnMgO, the incorporation of Mg leads to a higher activation energy (69.0 meV) compared to ZnO (48.3 meV), indicating increased carrier localization. This enhanced localization is further evidenced by the emergence of the nearest-neighbor hopping mechanism at low temperatures, with an activation energy of 2.8 meV. Additionally, optical characterization reveals a bandgap widening and an increase in Urbach energy, correlating with the observed shift in conduction mechanisms.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"319 \",\"pages\":\"Article 118325\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725003484\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725003484","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

ZnMgO作为一种可持续且具有成本效益的太阳能电池和传感器材料受到了广泛关注。本研究研究了ZnO和ZnMgO薄膜的传导机制,覆盖了广泛的温度范围(40 K-340 K)。电学表征揭示了ZnO从低温下的Mott变范围跳变转变,其特征是局域供体态密度为2.3×1021cm−3eV−1,局域长度为1.8 nm,到高温下的热激活传导。在ZnMgO中,与ZnO (48.3 meV)相比,Mg的掺入导致了更高的活化能(69.0 meV),表明载流子定位增强。低温下最近邻跳变机制的出现进一步证明了这种增强的局域性,其活化能为2.8 meV。此外,光学特性揭示了带隙的扩大和乌尔巴赫能量的增加,这与观察到的传导机制的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-dependent electrical properties of ZnO and ZnMgO thin films: Analysis of conduction mechanisms
ZnMgO has gained significant attention as a sustainable and cost-effective material for solar cells and sensors. This study investigates the conduction mechanisms in ZnO and ZnMgO thin films, covering a broad temperature range (40 K-340 K). Electrical characterization reveals a transition in ZnO from Mott variable-range hopping at low temperatures, characterized by a localized donor state density of 2.3×1021cm3eV1 and a localization length of 1.8 nm, to thermally activated conduction at higher temperatures. In ZnMgO, the incorporation of Mg leads to a higher activation energy (69.0 meV) compared to ZnO (48.3 meV), indicating increased carrier localization. This enhanced localization is further evidenced by the emergence of the nearest-neighbor hopping mechanism at low temperatures, with an activation energy of 2.8 meV. Additionally, optical characterization reveals a bandgap widening and an increase in Urbach energy, correlating with the observed shift in conduction mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信