基于视觉大模型的砂岩结构智能评价

IF 7 Q1 ENERGY & FUELS
Yili REN , Changmin ZENG , Xin LI , Xi LIU , Yanxu HU , Qianxiao SU , Xiaoming WANG , Zhiwei LIN , Yixiao ZHOU , Zilu ZHENG , Huiying HU , Yanning YANG , Fang HUI
{"title":"基于视觉大模型的砂岩结构智能评价","authors":"Yili REN ,&nbsp;Changmin ZENG ,&nbsp;Xin LI ,&nbsp;Xi LIU ,&nbsp;Yanxu HU ,&nbsp;Qianxiao SU ,&nbsp;Xiaoming WANG ,&nbsp;Zhiwei LIN ,&nbsp;Yixiao ZHOU ,&nbsp;Zilu ZHENG ,&nbsp;Huiying HU ,&nbsp;Yanning YANG ,&nbsp;Fang HUI","doi":"10.1016/S1876-3804(25)60586-6","DOIUrl":null,"url":null,"abstract":"<div><div>Existing sandstone rock structure evaluation methods rely on visual inspection, with low efficiency, semi-quantitative analysis of roundness, and inability to perform classified statistics in particle size analysis. This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model (SAM). By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters, a multispectral rock particle segmentation model named CoreSAM is constructed, which achieves rock particle edge extraction and type identification. Building upon this, we propose a comprehensive quantitative evaluation system for rock structure, assessing parameters including particle size, sorting, roundness, particle contact and cementation types. The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs. The proposed method enables full-sample, classified particle size analysis and quantitative characterization of parameters like roundness, advancing reservoir evaluation towards more precise, quantitative, intuitive, and comprehensive development.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 2","pages":"Pages 548-558"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent evaluation of sandstone rock structure based on a visual large model\",\"authors\":\"Yili REN ,&nbsp;Changmin ZENG ,&nbsp;Xin LI ,&nbsp;Xi LIU ,&nbsp;Yanxu HU ,&nbsp;Qianxiao SU ,&nbsp;Xiaoming WANG ,&nbsp;Zhiwei LIN ,&nbsp;Yixiao ZHOU ,&nbsp;Zilu ZHENG ,&nbsp;Huiying HU ,&nbsp;Yanning YANG ,&nbsp;Fang HUI\",\"doi\":\"10.1016/S1876-3804(25)60586-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing sandstone rock structure evaluation methods rely on visual inspection, with low efficiency, semi-quantitative analysis of roundness, and inability to perform classified statistics in particle size analysis. This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model (SAM). By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters, a multispectral rock particle segmentation model named CoreSAM is constructed, which achieves rock particle edge extraction and type identification. Building upon this, we propose a comprehensive quantitative evaluation system for rock structure, assessing parameters including particle size, sorting, roundness, particle contact and cementation types. The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs. The proposed method enables full-sample, classified particle size analysis and quantitative characterization of parameters like roundness, advancing reservoir evaluation towards more precise, quantitative, intuitive, and comprehensive development.</div></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"52 2\",\"pages\":\"Pages 548-558\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380425605866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425605866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

现有砂岩结构评价方法依赖于目测,效率低,对圆度进行半定量分析,粒度分析无法进行分类统计。提出了一种基于分段任意模型(SAM)的砂岩结构智能评价方法。通过开发一种轻量级的基于秩分解矩阵适配器的SAM微调方法,构建了多光谱岩石颗粒分割模型CoreSAM,实现了岩石颗粒边缘提取和类型识别。在此基础上,提出了岩石结构的综合定量评价体系,评价参数包括粒度、分选、圆度、颗粒接触和胶结类型。实验结果表明,CoreSAM在岩石颗粒分割精度方面优于现有方法,同时在不同的图像类型(如CT扫描和岩心照片)上表现出出色的泛化。该方法可实现全样品、分级粒度分析和圆度等参数的定量表征,推动储层评价向更精确、定量、直观、综合的方向发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent evaluation of sandstone rock structure based on a visual large model
Existing sandstone rock structure evaluation methods rely on visual inspection, with low efficiency, semi-quantitative analysis of roundness, and inability to perform classified statistics in particle size analysis. This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model (SAM). By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters, a multispectral rock particle segmentation model named CoreSAM is constructed, which achieves rock particle edge extraction and type identification. Building upon this, we propose a comprehensive quantitative evaluation system for rock structure, assessing parameters including particle size, sorting, roundness, particle contact and cementation types. The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs. The proposed method enables full-sample, classified particle size analysis and quantitative characterization of parameters like roundness, advancing reservoir evaluation towards more precise, quantitative, intuitive, and comprehensive development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信