{"title":"方形发热体中三叶草型高导热通道的结构设计","authors":"Lingen Chen , Tian Xie , Fengyin Zhang , Huijun Feng , Yanlin Ge","doi":"10.1016/j.csite.2025.106190","DOIUrl":null,"url":null,"abstract":"<div><div>Constructal design of a square heat generating body with a clover-shaped high thermal conductivity channel is carried out. The research focuses on minimizing the maximum temperature difference and the entropy generation rate by releasing degrees of freedom step by step. Through exploring the effects of thermal conductivity ratio and the proportion of high conductivity material area, which allows for a more nuanced understanding of how different design parameters affect the thermal performance and optimal construct. Results demonstrate that increasing these parameters significantly reduces temperature difference and thermodynamic irreversibility. For instance, when the thermal conductivity ratio rises from 100 to 600, the minimum dimensionless maximum temperature difference decreases by 28.1 %, and the minimum dimensionless entropy generation rate drops by 40.7 %. The study highlights the superiority of three degree-of-freedom optimization, which reduces the maximum temperature difference by 11.2 % and the entropy generation rate by 12.84 % compared to single degree-of-freedom optimization. Additionally, slender clover-shaped blades further improve heat transfer efficiency. The clover-shaped channel outperforms traditional I-shaped design and fan-shaped design, offering better thermal performance under the same conditions. The constructal design of clover-shaped high conductivity channel provides valuable insights for optimizing heat dissipation in electronic devices and other applications requiring efficient thermal management.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106190"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructal design for a clover-shaped high conductivity channel in a square heat generating body\",\"authors\":\"Lingen Chen , Tian Xie , Fengyin Zhang , Huijun Feng , Yanlin Ge\",\"doi\":\"10.1016/j.csite.2025.106190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructal design of a square heat generating body with a clover-shaped high thermal conductivity channel is carried out. The research focuses on minimizing the maximum temperature difference and the entropy generation rate by releasing degrees of freedom step by step. Through exploring the effects of thermal conductivity ratio and the proportion of high conductivity material area, which allows for a more nuanced understanding of how different design parameters affect the thermal performance and optimal construct. Results demonstrate that increasing these parameters significantly reduces temperature difference and thermodynamic irreversibility. For instance, when the thermal conductivity ratio rises from 100 to 600, the minimum dimensionless maximum temperature difference decreases by 28.1 %, and the minimum dimensionless entropy generation rate drops by 40.7 %. The study highlights the superiority of three degree-of-freedom optimization, which reduces the maximum temperature difference by 11.2 % and the entropy generation rate by 12.84 % compared to single degree-of-freedom optimization. Additionally, slender clover-shaped blades further improve heat transfer efficiency. The clover-shaped channel outperforms traditional I-shaped design and fan-shaped design, offering better thermal performance under the same conditions. The constructal design of clover-shaped high conductivity channel provides valuable insights for optimizing heat dissipation in electronic devices and other applications requiring efficient thermal management.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"71 \",\"pages\":\"Article 106190\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25004502\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004502","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Constructal design for a clover-shaped high conductivity channel in a square heat generating body
Constructal design of a square heat generating body with a clover-shaped high thermal conductivity channel is carried out. The research focuses on minimizing the maximum temperature difference and the entropy generation rate by releasing degrees of freedom step by step. Through exploring the effects of thermal conductivity ratio and the proportion of high conductivity material area, which allows for a more nuanced understanding of how different design parameters affect the thermal performance and optimal construct. Results demonstrate that increasing these parameters significantly reduces temperature difference and thermodynamic irreversibility. For instance, when the thermal conductivity ratio rises from 100 to 600, the minimum dimensionless maximum temperature difference decreases by 28.1 %, and the minimum dimensionless entropy generation rate drops by 40.7 %. The study highlights the superiority of three degree-of-freedom optimization, which reduces the maximum temperature difference by 11.2 % and the entropy generation rate by 12.84 % compared to single degree-of-freedom optimization. Additionally, slender clover-shaped blades further improve heat transfer efficiency. The clover-shaped channel outperforms traditional I-shaped design and fan-shaped design, offering better thermal performance under the same conditions. The constructal design of clover-shaped high conductivity channel provides valuable insights for optimizing heat dissipation in electronic devices and other applications requiring efficient thermal management.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.