脑特征图揭示了腹侧流中渐进的动物特征表征

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhanqi Zhang, Till S. Hartmann, Richard T. Born, Margaret S. Livingstone, Carlos R. Ponce
{"title":"脑特征图揭示了腹侧流中渐进的动物特征表征","authors":"Zhanqi Zhang,&nbsp;Till S. Hartmann,&nbsp;Richard T. Born,&nbsp;Margaret S. Livingstone,&nbsp;Carlos R. Ponce","doi":"10.1126/sciadv.adq7342","DOIUrl":null,"url":null,"abstract":"<div >What are the fundamental principles that inform representation in the primate visual brain? While objects have become an intuitive framework for studying neurons in many parts of cortex, it is possible that neurons follow a more expressive organizational principle, such as encoding generic features present across textures, places, and objects. In this study, we used multielectrode arrays to record from neurons in the early (V1/V2), middle (V4), and later [posterior inferotemporal (PIT) cortex] areas across the visual hierarchy, estimating each neuron’s local operation across natural scene via “heatmaps.” We found that, while populations of neurons with foveal receptive fields across V1/V2, V4, and PIT responded over the full scene, they focused on salient subregions within object outlines. Notably, neurons preferentially encoded animal features rather than general objects, with this trend strengthening along the visual hierarchy. These results show that the monkey ventral stream is partially organized to encode local animal features over objects, even as early as primary visual cortex.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 17","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq7342","citationCount":"0","resultStr":"{\"title\":\"Brain feature maps reveal progressive animal-feature representations in the ventral stream\",\"authors\":\"Zhanqi Zhang,&nbsp;Till S. Hartmann,&nbsp;Richard T. Born,&nbsp;Margaret S. Livingstone,&nbsp;Carlos R. Ponce\",\"doi\":\"10.1126/sciadv.adq7342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >What are the fundamental principles that inform representation in the primate visual brain? While objects have become an intuitive framework for studying neurons in many parts of cortex, it is possible that neurons follow a more expressive organizational principle, such as encoding generic features present across textures, places, and objects. In this study, we used multielectrode arrays to record from neurons in the early (V1/V2), middle (V4), and later [posterior inferotemporal (PIT) cortex] areas across the visual hierarchy, estimating each neuron’s local operation across natural scene via “heatmaps.” We found that, while populations of neurons with foveal receptive fields across V1/V2, V4, and PIT responded over the full scene, they focused on salient subregions within object outlines. Notably, neurons preferentially encoded animal features rather than general objects, with this trend strengthening along the visual hierarchy. These results show that the monkey ventral stream is partially organized to encode local animal features over objects, even as early as primary visual cortex.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 17\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq7342\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq7342\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq7342","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在灵长类动物的视觉大脑中,什么是基本的原则?虽然物体已经成为研究皮层许多部分神经元的直观框架,但神经元可能遵循更具表现力的组织原则,例如编码跨纹理、地点和物体呈现的通用特征。在这项研究中,我们使用多电极阵列记录视觉层次上早期(V1/V2)、中期(V4)和后期(后颞下皮层)区域的神经元,通过“热图”估计每个神经元在自然场景中的局部操作。我们发现,虽然具有V1/V2、V4和PIT中央凹接受野的神经元群对整个场景都有反应,但它们专注于物体轮廓内的显著子区域。值得注意的是,神经元优先编码动物特征而不是一般物体,这种趋势沿着视觉层次加强。这些结果表明,早在初级视觉皮层中,猴子的腹侧流就部分组织起来对局部动物特征进行编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brain feature maps reveal progressive animal-feature representations in the ventral stream

Brain feature maps reveal progressive animal-feature representations in the ventral stream
What are the fundamental principles that inform representation in the primate visual brain? While objects have become an intuitive framework for studying neurons in many parts of cortex, it is possible that neurons follow a more expressive organizational principle, such as encoding generic features present across textures, places, and objects. In this study, we used multielectrode arrays to record from neurons in the early (V1/V2), middle (V4), and later [posterior inferotemporal (PIT) cortex] areas across the visual hierarchy, estimating each neuron’s local operation across natural scene via “heatmaps.” We found that, while populations of neurons with foveal receptive fields across V1/V2, V4, and PIT responded over the full scene, they focused on salient subregions within object outlines. Notably, neurons preferentially encoded animal features rather than general objects, with this trend strengthening along the visual hierarchy. These results show that the monkey ventral stream is partially organized to encode local animal features over objects, even as early as primary visual cortex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信