{"title":"从第一水层开始识别和控制纳米约束中的水摩擦","authors":"Yang Zhao, Luyao Bao, Xiaoli Fan, Feng Zhou","doi":"10.26599/frict.2025.9441032","DOIUrl":null,"url":null,"abstract":"<p>Water friction in nanoconfinement is of great importance in water lubrication and membrane-based applications, yet remains fraught with doubts despite great efforts. Our molecular dynamics simulations demonstrate that the first water layer adjacent to the surface plays an important role in interfacial friction. Applying a uniform strain to the surface (changing the lattice constant) can induce a significant change in friction and is quite different for the hydrophilic and hydrophobic cases. Specifically, in the hydrophilic case, there is maximum friction when the lattice constant approaches the preferential oxygen‒oxygen distance of the first water layer (a constant value), and the further it deviates, the smaller the friction. The maximum friction corresponds to the most ordered first water layer. While in the hydrophobic case, the friction increases monotonically with increasing lattice constant, which hardly changes the first water layer structure but only increases the difficulty of water molecular jump (meaning jump from one equilibrium position to another). Starting from the molecular jump in the first water layer, theoretical dependence of friction on the molecular activation barrier and shear velocity is established, which provides a reasonable explanation for the friction behavior. Moreover, the water transport behavior in nanochannels supports the finding of the friction dependence on the lattice constant, suggesting great potential for improving and controlling water transport. Our results not only provide a novel understanding of nanoconfined water friction but are also instructive for friction control and water transport.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"140 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognizing and controlling water friction in nanoconfinement from the first water layer\",\"authors\":\"Yang Zhao, Luyao Bao, Xiaoli Fan, Feng Zhou\",\"doi\":\"10.26599/frict.2025.9441032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water friction in nanoconfinement is of great importance in water lubrication and membrane-based applications, yet remains fraught with doubts despite great efforts. Our molecular dynamics simulations demonstrate that the first water layer adjacent to the surface plays an important role in interfacial friction. Applying a uniform strain to the surface (changing the lattice constant) can induce a significant change in friction and is quite different for the hydrophilic and hydrophobic cases. Specifically, in the hydrophilic case, there is maximum friction when the lattice constant approaches the preferential oxygen‒oxygen distance of the first water layer (a constant value), and the further it deviates, the smaller the friction. The maximum friction corresponds to the most ordered first water layer. While in the hydrophobic case, the friction increases monotonically with increasing lattice constant, which hardly changes the first water layer structure but only increases the difficulty of water molecular jump (meaning jump from one equilibrium position to another). Starting from the molecular jump in the first water layer, theoretical dependence of friction on the molecular activation barrier and shear velocity is established, which provides a reasonable explanation for the friction behavior. Moreover, the water transport behavior in nanochannels supports the finding of the friction dependence on the lattice constant, suggesting great potential for improving and controlling water transport. Our results not only provide a novel understanding of nanoconfined water friction but are also instructive for friction control and water transport.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441032\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441032","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Recognizing and controlling water friction in nanoconfinement from the first water layer
Water friction in nanoconfinement is of great importance in water lubrication and membrane-based applications, yet remains fraught with doubts despite great efforts. Our molecular dynamics simulations demonstrate that the first water layer adjacent to the surface plays an important role in interfacial friction. Applying a uniform strain to the surface (changing the lattice constant) can induce a significant change in friction and is quite different for the hydrophilic and hydrophobic cases. Specifically, in the hydrophilic case, there is maximum friction when the lattice constant approaches the preferential oxygen‒oxygen distance of the first water layer (a constant value), and the further it deviates, the smaller the friction. The maximum friction corresponds to the most ordered first water layer. While in the hydrophobic case, the friction increases monotonically with increasing lattice constant, which hardly changes the first water layer structure but only increases the difficulty of water molecular jump (meaning jump from one equilibrium position to another). Starting from the molecular jump in the first water layer, theoretical dependence of friction on the molecular activation barrier and shear velocity is established, which provides a reasonable explanation for the friction behavior. Moreover, the water transport behavior in nanochannels supports the finding of the friction dependence on the lattice constant, suggesting great potential for improving and controlling water transport. Our results not only provide a novel understanding of nanoconfined water friction but are also instructive for friction control and water transport.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.