Cássio Flávio Fonseca de Lima, Tingting Zhu, Lisa Van den Broeck, Brigitte Van De Cotte, Anna M Locke, Rosangela Sozzani, Ive De Smet
{"title":"大规模比较小麦磷蛋白质组分析揭示了小麦温度相关的分子特征","authors":"Cássio Flávio Fonseca de Lima, Tingting Zhu, Lisa Van den Broeck, Brigitte Van De Cotte, Anna M Locke, Rosangela Sozzani, Ive De Smet","doi":"10.1093/plphys/kiaf107","DOIUrl":null,"url":null,"abstract":"Elevated temperatures resulting from climate change adversely affect natural and crop ecosystems, necessitating the development of heat-tolerant crops. Here, we established a framework to precisely identify protein phosphorylation sites associated with varying temperature sensitivities in wheat (Triticum aestivum). We identified specific kinases primarily associated with particular temperatures, but our results also suggest a striking overlap between cold and heat signaling. Furthermore, we propose that the phosphorylation state of a specific set of proteins may represent a signature for heat stress tolerance. These findings can potentially aid in the identification of targets for breeding or genome editing to enhance the sub- and supra-optimal temperature tolerance of crops.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"33 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale comparative wheat phosphoproteome profiling reveals temperature-associated molecular signatures in wheat\",\"authors\":\"Cássio Flávio Fonseca de Lima, Tingting Zhu, Lisa Van den Broeck, Brigitte Van De Cotte, Anna M Locke, Rosangela Sozzani, Ive De Smet\",\"doi\":\"10.1093/plphys/kiaf107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elevated temperatures resulting from climate change adversely affect natural and crop ecosystems, necessitating the development of heat-tolerant crops. Here, we established a framework to precisely identify protein phosphorylation sites associated with varying temperature sensitivities in wheat (Triticum aestivum). We identified specific kinases primarily associated with particular temperatures, but our results also suggest a striking overlap between cold and heat signaling. Furthermore, we propose that the phosphorylation state of a specific set of proteins may represent a signature for heat stress tolerance. These findings can potentially aid in the identification of targets for breeding or genome editing to enhance the sub- and supra-optimal temperature tolerance of crops.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf107\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf107","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Elevated temperatures resulting from climate change adversely affect natural and crop ecosystems, necessitating the development of heat-tolerant crops. Here, we established a framework to precisely identify protein phosphorylation sites associated with varying temperature sensitivities in wheat (Triticum aestivum). We identified specific kinases primarily associated with particular temperatures, but our results also suggest a striking overlap between cold and heat signaling. Furthermore, we propose that the phosphorylation state of a specific set of proteins may represent a signature for heat stress tolerance. These findings can potentially aid in the identification of targets for breeding or genome editing to enhance the sub- and supra-optimal temperature tolerance of crops.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.