用于长寿命钠离子电池阴极的高结晶和坚固的供体-受体型共价有机框架

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-25 DOI:10.1002/smll.202412698
Kun Kang, Ying Liu, Jiaqi Duan, Xue Tang, Yan Wang, Shiqi Zhang, Heng Wang, Jincan Cui, Xiaolei Yuan, Xu Deng, Ning Fu, Ben Yang, Jian-Yong Hu
{"title":"用于长寿命钠离子电池阴极的高结晶和坚固的供体-受体型共价有机框架","authors":"Kun Kang, Ying Liu, Jiaqi Duan, Xue Tang, Yan Wang, Shiqi Zhang, Heng Wang, Jincan Cui, Xiaolei Yuan, Xu Deng, Ning Fu, Ben Yang, Jian-Yong Hu","doi":"10.1002/smll.202412698","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks (COFs) hold great potential in sodium-ion battery cathodes. However, most reported COF-based electrodes show unsatisfying capacity and rate performance due to their limited redox site density, low crystallinity, and poor conductivity. Herein, a highly crystalline and robust donor-acceptor type COF with abundant redox active sites is developed by the polymerization of donor unit benzo[1,2-b:3,4-b″:5,6-b″']trithiophene-2,5,8-tricarbaldehyde) (BTT) and acceptor unit s-indacene-1,3,5,7(2H,6H)-tetrone (ICTO) (denoted as BTT-ICTO) for cathodic Na<sup>+</sup> storage. The BTT-ICTO-graphene composites (BTT-ICTO@G) synthesized by in situ growth have a loose sheet structure with rough surfaces, contributing to the improved conductivity and active site utilization of BTT-ICTO. Benefiting from the robustness of BTT-ICTO linked by ethylene bonds, the BTT-ICTO@G cathodes exhibit a high capacity of 325 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> with a high active site utilization of 80%, excellent rate performance of 190 mAh g<sup>−1</sup> at 5.0 A g<sup>−1</sup>, and exceptional cycle performances of 196 mAh g<sup>−1</sup> over 10 000 cycles at 2.0 A g<sup>−1</sup> with only 0.0015% decay per cycle. These properties make the BTT-ICTO@G cathodes among the best-reported COF-based sodium-ion battery cathodes. In addition, in situ Raman, ex situ Fourier transform infrared, and theoretical calculations disclose the reaction pathway of Na<sup>+</sup> storage.","PeriodicalId":228,"journal":{"name":"Small","volume":"28 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Crystalline and Robust Donor-Acceptor Type Covalent Organic Frameworks for Long-life Sodium-Ion Battery Cathodes\",\"authors\":\"Kun Kang, Ying Liu, Jiaqi Duan, Xue Tang, Yan Wang, Shiqi Zhang, Heng Wang, Jincan Cui, Xiaolei Yuan, Xu Deng, Ning Fu, Ben Yang, Jian-Yong Hu\",\"doi\":\"10.1002/smll.202412698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covalent organic frameworks (COFs) hold great potential in sodium-ion battery cathodes. However, most reported COF-based electrodes show unsatisfying capacity and rate performance due to their limited redox site density, low crystallinity, and poor conductivity. Herein, a highly crystalline and robust donor-acceptor type COF with abundant redox active sites is developed by the polymerization of donor unit benzo[1,2-b:3,4-b″:5,6-b″']trithiophene-2,5,8-tricarbaldehyde) (BTT) and acceptor unit s-indacene-1,3,5,7(2H,6H)-tetrone (ICTO) (denoted as BTT-ICTO) for cathodic Na<sup>+</sup> storage. The BTT-ICTO-graphene composites (BTT-ICTO@G) synthesized by in situ growth have a loose sheet structure with rough surfaces, contributing to the improved conductivity and active site utilization of BTT-ICTO. Benefiting from the robustness of BTT-ICTO linked by ethylene bonds, the BTT-ICTO@G cathodes exhibit a high capacity of 325 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> with a high active site utilization of 80%, excellent rate performance of 190 mAh g<sup>−1</sup> at 5.0 A g<sup>−1</sup>, and exceptional cycle performances of 196 mAh g<sup>−1</sup> over 10 000 cycles at 2.0 A g<sup>−1</sup> with only 0.0015% decay per cycle. These properties make the BTT-ICTO@G cathodes among the best-reported COF-based sodium-ion battery cathodes. In addition, in situ Raman, ex situ Fourier transform infrared, and theoretical calculations disclose the reaction pathway of Na<sup>+</sup> storage.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202412698\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412698","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机骨架(COFs)在钠离子电池阴极中具有很大的应用潜力。然而,大多数报道的基于cof的电极由于其有限的氧化还原位点密度、低结晶度和导电性差而表现出令人不满意的容量和速率性能。本文通过聚合供体单元苯并[1,2-b:3,4-b″:5,6-b″']三噻吩-2,5,8-三乙醛)(BTT)和受体单元s-茚二烯-1,3,5,7(2H,6H)-四酮(ICTO)(记为BTT-ICTO),开发了一种具有丰富氧化还原活性位点的高结晶性和坚固性的供体-受体型COF。原位生长合成的BTT-ICTO-石墨烯复合材料(BTT-ICTO@G)具有松散的片状结构,表面粗糙,有助于提高BTT-ICTO的导电性和活性位点利用率。得益于乙烯键连接的BTT-ICTO的坚固性,BTT-ICTO@G阴极在0.1 a g - 1时具有325 mAh g - 1的高容量,活性位点利用率高达80%,在5.0 a g - 1时具有190 mAh g - 1的优异倍率性能,在2.0 a g - 1下具有196 mAh g - 1的优异循环性能,在10,000次循环中只有0.0015%的衰减。这些特性使BTT-ICTO@G阴极成为报道最多的cof基钠离子电池阴极之一。此外,原位拉曼、非原位傅立叶红外变换和理论计算揭示了Na+存储的反应途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Crystalline and Robust Donor-Acceptor Type Covalent Organic Frameworks for Long-life Sodium-Ion Battery Cathodes

Highly Crystalline and Robust Donor-Acceptor Type Covalent Organic Frameworks for Long-life Sodium-Ion Battery Cathodes
Covalent organic frameworks (COFs) hold great potential in sodium-ion battery cathodes. However, most reported COF-based electrodes show unsatisfying capacity and rate performance due to their limited redox site density, low crystallinity, and poor conductivity. Herein, a highly crystalline and robust donor-acceptor type COF with abundant redox active sites is developed by the polymerization of donor unit benzo[1,2-b:3,4-b″:5,6-b″']trithiophene-2,5,8-tricarbaldehyde) (BTT) and acceptor unit s-indacene-1,3,5,7(2H,6H)-tetrone (ICTO) (denoted as BTT-ICTO) for cathodic Na+ storage. The BTT-ICTO-graphene composites (BTT-ICTO@G) synthesized by in situ growth have a loose sheet structure with rough surfaces, contributing to the improved conductivity and active site utilization of BTT-ICTO. Benefiting from the robustness of BTT-ICTO linked by ethylene bonds, the BTT-ICTO@G cathodes exhibit a high capacity of 325 mAh g−1 at 0.1 A g−1 with a high active site utilization of 80%, excellent rate performance of 190 mAh g−1 at 5.0 A g−1, and exceptional cycle performances of 196 mAh g−1 over 10 000 cycles at 2.0 A g−1 with only 0.0015% decay per cycle. These properties make the BTT-ICTO@G cathodes among the best-reported COF-based sodium-ion battery cathodes. In addition, in situ Raman, ex situ Fourier transform infrared, and theoretical calculations disclose the reaction pathway of Na+ storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信