整合GWAS和转录组方法鉴定番茄的氮、磷和钾响应基因

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Mannan Zhang, Huaiqian Tang, Qin Xu, Zhihao Xiao, Chengxuan Zhou, Yuxiao Qian, Ruyue Gong, Huating Zhao, Jiaying Wang, Zijing Xing, Taotao Wang, Bo Ouyang, Yuyang Zhang, Junhong Zhang, Zhibiao Ye, Jie Ye
{"title":"整合GWAS和转录组方法鉴定番茄的氮、磷和钾响应基因","authors":"Mannan Zhang, Huaiqian Tang, Qin Xu, Zhihao Xiao, Chengxuan Zhou, Yuxiao Qian, Ruyue Gong, Huating Zhao, Jiaying Wang, Zijing Xing, Taotao Wang, Bo Ouyang, Yuyang Zhang, Junhong Zhang, Zhibiao Ye, Jie Ye","doi":"10.1093/hr/uhaf112","DOIUrl":null,"url":null,"abstract":"Plant growth is inseparable from the presence of mineral nutrients such as nitrogen, phosphorus and potassium, but the mechanism by which horticultural plants such as tomatoes respond to mineral elements is poorly understood. Here, we collected 28 phenotypic datasets, including 5 agronomic traits and 4 pigment accumulation traits, under full nutrition and nitrogen/phosphorus/potassium deficiency conditions, most of which showed abundant variation. Phenotyping analysis suggested that the yellowing of leaves under low-nitrogen treatment was caused by an increase in the carotenoid content and a decrease in the chlorophyll b content. A genome-wide association study identified a total of 138 suggestive loci (including 23 significant loci) corresponding to 116 loci, including many reported and new candidate genes related to mineral element response and absorption. Transcriptome analysis of tomato seedlings under full nutrient and N/P/K deficiency conditions revealed 1,108 and 1,507 common differentially expressed genes in above-ground and below-ground tissues, respectively, with 103 overlapping genes. GO term enrichment analysis revealed that tomato plants resist low nutrient stress by increasing photosynthesis in the above-ground parts and ion transport capacity in the below-ground parts. Through the combined analysis of GWAS and RNA-Seq, we identified 28 mineral element response genes with high confidence, corresponding to 17 loci, which may be closely related to the response and utilization of N, P, and K in tomato. Two candidate genes, auxin-repressed protein (Solyc02g077880), which responds to carotenoid and chlorophyll b accumulation, and guanine nucleotide exchange factor-like protein (Solyc04g005560), which responds to low-phosphorus conditions, were further validated via haplotype analysis. This study provides new insights into the nitrogen, phosphorus, and potassium response mechanisms of tomato and offers valuable genetic resources for future improvements in tomato breeding.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"17 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of GWAS and transcriptome approaches for the identification of nitrogen-, phosphorus-, and potassium-responsive genes in tomato\",\"authors\":\"Mannan Zhang, Huaiqian Tang, Qin Xu, Zhihao Xiao, Chengxuan Zhou, Yuxiao Qian, Ruyue Gong, Huating Zhao, Jiaying Wang, Zijing Xing, Taotao Wang, Bo Ouyang, Yuyang Zhang, Junhong Zhang, Zhibiao Ye, Jie Ye\",\"doi\":\"10.1093/hr/uhaf112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant growth is inseparable from the presence of mineral nutrients such as nitrogen, phosphorus and potassium, but the mechanism by which horticultural plants such as tomatoes respond to mineral elements is poorly understood. Here, we collected 28 phenotypic datasets, including 5 agronomic traits and 4 pigment accumulation traits, under full nutrition and nitrogen/phosphorus/potassium deficiency conditions, most of which showed abundant variation. Phenotyping analysis suggested that the yellowing of leaves under low-nitrogen treatment was caused by an increase in the carotenoid content and a decrease in the chlorophyll b content. A genome-wide association study identified a total of 138 suggestive loci (including 23 significant loci) corresponding to 116 loci, including many reported and new candidate genes related to mineral element response and absorption. Transcriptome analysis of tomato seedlings under full nutrient and N/P/K deficiency conditions revealed 1,108 and 1,507 common differentially expressed genes in above-ground and below-ground tissues, respectively, with 103 overlapping genes. GO term enrichment analysis revealed that tomato plants resist low nutrient stress by increasing photosynthesis in the above-ground parts and ion transport capacity in the below-ground parts. Through the combined analysis of GWAS and RNA-Seq, we identified 28 mineral element response genes with high confidence, corresponding to 17 loci, which may be closely related to the response and utilization of N, P, and K in tomato. Two candidate genes, auxin-repressed protein (Solyc02g077880), which responds to carotenoid and chlorophyll b accumulation, and guanine nucleotide exchange factor-like protein (Solyc04g005560), which responds to low-phosphorus conditions, were further validated via haplotype analysis. This study provides new insights into the nitrogen, phosphorus, and potassium response mechanisms of tomato and offers valuable genetic resources for future improvements in tomato breeding.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhaf112\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf112","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

植物生长与氮、磷、钾等矿质营养元素的存在密不可分,但人们对番茄等园艺植物对矿质元素的反应机制却知之甚少。在此,我们收集了全营养和氮磷钾缺乏条件下的28个表型数据集,包括5个农艺性状和4个色素积累性状,其中大部分表现出丰富的变异。表型分析表明,低氮处理下叶片变黄是由类胡萝卜素含量增加和叶绿素b含量减少引起的。全基因组关联研究共发现 138 个提示性位点(包括 23 个显著位点),与 116 个位点相对应,其中包括许多已报道的和新的与矿质元素反应和吸收相关的候选基因。番茄幼苗在全营养条件和 N/P/K 缺乏条件下的转录组分析显示,地上组织和地下组织分别有 1,108 和 1,507 个常见差异表达基因,其中有 103 个重叠基因。GO项富集分析表明,番茄植株通过提高地上部分的光合作用和地下部分的离子运输能力来抵抗低养分胁迫。通过GWAS和RNA-Seq的联合分析,我们发现了28个高置信度的矿质元素响应基因,对应17个位点,这些基因可能与番茄对氮、磷、钾的响应和利用密切相关。通过单倍型分析,我们进一步验证了两个候选基因,即对类胡萝卜素和叶绿素b积累有响应的辅助素抑制蛋白(Solyc02g077880)和对低磷条件有响应的鸟嘌呤核苷酸交换因子样蛋白(Solyc04g005560)。该研究为了解番茄的氮、磷、钾响应机制提供了新的视角,并为今后番茄育种改良提供了宝贵的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of GWAS and transcriptome approaches for the identification of nitrogen-, phosphorus-, and potassium-responsive genes in tomato
Plant growth is inseparable from the presence of mineral nutrients such as nitrogen, phosphorus and potassium, but the mechanism by which horticultural plants such as tomatoes respond to mineral elements is poorly understood. Here, we collected 28 phenotypic datasets, including 5 agronomic traits and 4 pigment accumulation traits, under full nutrition and nitrogen/phosphorus/potassium deficiency conditions, most of which showed abundant variation. Phenotyping analysis suggested that the yellowing of leaves under low-nitrogen treatment was caused by an increase in the carotenoid content and a decrease in the chlorophyll b content. A genome-wide association study identified a total of 138 suggestive loci (including 23 significant loci) corresponding to 116 loci, including many reported and new candidate genes related to mineral element response and absorption. Transcriptome analysis of tomato seedlings under full nutrient and N/P/K deficiency conditions revealed 1,108 and 1,507 common differentially expressed genes in above-ground and below-ground tissues, respectively, with 103 overlapping genes. GO term enrichment analysis revealed that tomato plants resist low nutrient stress by increasing photosynthesis in the above-ground parts and ion transport capacity in the below-ground parts. Through the combined analysis of GWAS and RNA-Seq, we identified 28 mineral element response genes with high confidence, corresponding to 17 loci, which may be closely related to the response and utilization of N, P, and K in tomato. Two candidate genes, auxin-repressed protein (Solyc02g077880), which responds to carotenoid and chlorophyll b accumulation, and guanine nucleotide exchange factor-like protein (Solyc04g005560), which responds to low-phosphorus conditions, were further validated via haplotype analysis. This study provides new insights into the nitrogen, phosphorus, and potassium response mechanisms of tomato and offers valuable genetic resources for future improvements in tomato breeding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信