Brianna Cyr, Regina T. Vontell, Roey Hadad, Juan Pablo de Rivero Vaccari, Robert W. Keane
{"title":"IC100阻断α-突触核蛋白聚集体和ASC斑点诱导的炎性小体活化","authors":"Brianna Cyr, Regina T. Vontell, Roey Hadad, Juan Pablo de Rivero Vaccari, Robert W. Keane","doi":"10.1038/s41531-025-00963-8","DOIUrl":null,"url":null,"abstract":"<p>Parkinson’s disease (PD) is associated with chronic sterile inflammation and persistent inflammasome activation involving α-synuclein and ASC protein aggregates, but the underlying mechanisms of the neuroinflammatory response remain unclear. Here, we used midbrain postmortem samples from donors with and without α-synucleinopathies to assess the expression of inflammasome proteins in patients with Parkinsonism. We show that dopaminergic neurons exhibit increased expression of ASC, NOD-like receptor protein (NLRP) 1, and modification of α-synuclein phosphorylation at serine129 (pS129) within the Lewy body inclusions, whereas NLRP3 was identified mainly in microglial. Moreover, treatment of LRRK2 cells with ASC specks from PD and Lewy body dementia patients induced inflammasome activation and cytotoxicity that was blocked by IC100. Administration of preformed α-synuclein aggregates to microglia resulted in a significant elevation in pS129, and this effect was also blocked by IC100. Thus, IC100 may be a promising therapeutic strategy for inflammatory disease modification in synucleinopathies and other diseases.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"74 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IC100 blocks inflammasome activation induced by α-synuclein aggregates and ASC specks\",\"authors\":\"Brianna Cyr, Regina T. Vontell, Roey Hadad, Juan Pablo de Rivero Vaccari, Robert W. Keane\",\"doi\":\"10.1038/s41531-025-00963-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Parkinson’s disease (PD) is associated with chronic sterile inflammation and persistent inflammasome activation involving α-synuclein and ASC protein aggregates, but the underlying mechanisms of the neuroinflammatory response remain unclear. Here, we used midbrain postmortem samples from donors with and without α-synucleinopathies to assess the expression of inflammasome proteins in patients with Parkinsonism. We show that dopaminergic neurons exhibit increased expression of ASC, NOD-like receptor protein (NLRP) 1, and modification of α-synuclein phosphorylation at serine129 (pS129) within the Lewy body inclusions, whereas NLRP3 was identified mainly in microglial. Moreover, treatment of LRRK2 cells with ASC specks from PD and Lewy body dementia patients induced inflammasome activation and cytotoxicity that was blocked by IC100. Administration of preformed α-synuclein aggregates to microglia resulted in a significant elevation in pS129, and this effect was also blocked by IC100. Thus, IC100 may be a promising therapeutic strategy for inflammatory disease modification in synucleinopathies and other diseases.</p>\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-025-00963-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00963-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
IC100 blocks inflammasome activation induced by α-synuclein aggregates and ASC specks
Parkinson’s disease (PD) is associated with chronic sterile inflammation and persistent inflammasome activation involving α-synuclein and ASC protein aggregates, but the underlying mechanisms of the neuroinflammatory response remain unclear. Here, we used midbrain postmortem samples from donors with and without α-synucleinopathies to assess the expression of inflammasome proteins in patients with Parkinsonism. We show that dopaminergic neurons exhibit increased expression of ASC, NOD-like receptor protein (NLRP) 1, and modification of α-synuclein phosphorylation at serine129 (pS129) within the Lewy body inclusions, whereas NLRP3 was identified mainly in microglial. Moreover, treatment of LRRK2 cells with ASC specks from PD and Lewy body dementia patients induced inflammasome activation and cytotoxicity that was blocked by IC100. Administration of preformed α-synuclein aggregates to microglia resulted in a significant elevation in pS129, and this effect was also blocked by IC100. Thus, IC100 may be a promising therapeutic strategy for inflammatory disease modification in synucleinopathies and other diseases.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.