{"title":"具有极大比表面积的单分散二氧化硅微球:制备和表征","authors":"Ruicheng Xiao, Siming Yu, Zhongsheng Tang, Jianping Tang, Hang Zhang, Shengliang Zhong","doi":"10.1021/acs.langmuir.5c00607","DOIUrl":null,"url":null,"abstract":"Monodisperse SiO<sub>2</sub> microspheres are widely used in catalysis, separation, adsorption, and drug delivery. Their particle size, uniformity, and specific surface area are crucial for these applications. This study reports the novel preparation of monodisperse SiO<sub>2</sub> microspheres using cetyltrimethylammonium bromide as the template agent, employing hexadecylamine serving concurrently as a pore-expanding agent and catalyst. By controlling the reactant quantities and reaction conditions, we achieved monodisperse SiO<sub>2</sub> microspheres with tunable particle sizes ranging from 800 nm to 2.5 μm with exceptionally large specific surface areas. It is worth mentioning that microspheres with a particle size of 2 μm and extremely uniform size distribution were produced at room temperature. Excitingly, it has a BET specific surface area of 1543 m<sup>2</sup>/g. Various effects on the preparation of the microspheres were investigated in detail, and the growth mechanism of these microspheres was elucidated.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"1 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monodisperse Silica Microsphere with Extremely Large Specific Surface Area: Preparation and Characterization\",\"authors\":\"Ruicheng Xiao, Siming Yu, Zhongsheng Tang, Jianping Tang, Hang Zhang, Shengliang Zhong\",\"doi\":\"10.1021/acs.langmuir.5c00607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monodisperse SiO<sub>2</sub> microspheres are widely used in catalysis, separation, adsorption, and drug delivery. Their particle size, uniformity, and specific surface area are crucial for these applications. This study reports the novel preparation of monodisperse SiO<sub>2</sub> microspheres using cetyltrimethylammonium bromide as the template agent, employing hexadecylamine serving concurrently as a pore-expanding agent and catalyst. By controlling the reactant quantities and reaction conditions, we achieved monodisperse SiO<sub>2</sub> microspheres with tunable particle sizes ranging from 800 nm to 2.5 μm with exceptionally large specific surface areas. It is worth mentioning that microspheres with a particle size of 2 μm and extremely uniform size distribution were produced at room temperature. Excitingly, it has a BET specific surface area of 1543 m<sup>2</sup>/g. Various effects on the preparation of the microspheres were investigated in detail, and the growth mechanism of these microspheres was elucidated.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c00607\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00607","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Monodisperse Silica Microsphere with Extremely Large Specific Surface Area: Preparation and Characterization
Monodisperse SiO2 microspheres are widely used in catalysis, separation, adsorption, and drug delivery. Their particle size, uniformity, and specific surface area are crucial for these applications. This study reports the novel preparation of monodisperse SiO2 microspheres using cetyltrimethylammonium bromide as the template agent, employing hexadecylamine serving concurrently as a pore-expanding agent and catalyst. By controlling the reactant quantities and reaction conditions, we achieved monodisperse SiO2 microspheres with tunable particle sizes ranging from 800 nm to 2.5 μm with exceptionally large specific surface areas. It is worth mentioning that microspheres with a particle size of 2 μm and extremely uniform size distribution were produced at room temperature. Excitingly, it has a BET specific surface area of 1543 m2/g. Various effects on the preparation of the microspheres were investigated in detail, and the growth mechanism of these microspheres was elucidated.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).