宽带电磁干扰屏蔽用超高导电性MXene薄膜

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ju-Hyoung Han, Jaeeun Park, Mincheal Kim, Sungwoo Lee, Jin Myeong Heo, Young Ho Jin, Yujin Chae, Juwon Han, Jaewon Wang, Shi-Hyun Seok, Yeoseon Sim, Gangil Byun, Gun-Do Lee, EunMi Choi, Soon-Yong Kwon
{"title":"宽带电磁干扰屏蔽用超高导电性MXene薄膜","authors":"Ju-Hyoung Han,&nbsp;Jaeeun Park,&nbsp;Mincheal Kim,&nbsp;Sungwoo Lee,&nbsp;Jin Myeong Heo,&nbsp;Young Ho Jin,&nbsp;Yujin Chae,&nbsp;Juwon Han,&nbsp;Jaewon Wang,&nbsp;Shi-Hyun Seok,&nbsp;Yeoseon Sim,&nbsp;Gangil Byun,&nbsp;Gun-Do Lee,&nbsp;EunMi Choi,&nbsp;Soon-Yong Kwon","doi":"10.1002/adma.202502443","DOIUrl":null,"url":null,"abstract":"<p>Broadband and ultrathin electromagnetic interference (EMI)-shielding materials are crucial for efficient high-frequency data transmission in emerging technologies. MXenes are renowned for their outstanding electrical conductivity and EMI-shielding capability. While substituting nitrogen (N) for carbon (C) atoms in the conventional MXene structure is theoretically expected to enhance these properties, synthesis challenges have hindered progress. Here, it is demonstrated that Ti<i><sub>x</sub></i>C<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub>T<i><sub>z</sub></i> MXene films with optimized N content achieve a record-high electrical conductivity of 35 000 S cm<sup>−1</sup> and exceptional broadband EMI shielding across the X (8–12.4 GHz), K<sub>a</sub> (26.5–40 GHz), and W (75–110 GHz) bands—outperforming all previously reported materials even at reduced thicknesses. By synthesizing a full series of high-stoichiometric Ti<i><sub>x</sub></i>AlC<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub> MAX phases without intermediate phases, the impact of N substitution on the physical and electrical properties of Ti<i><sub>x</sub></i>C<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub>T<i><sub>z</sub></i> MXene flakes is systematically explored, achieving complete composition tunability in both dispersion and film forms. These findings position Ti<i><sub>x</sub></i>C<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub>T<i><sub>z</sub></i> MXenes as promising candidates for applications spanning from conventional lower-frequency domains to next-generation sub-THz electronics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 27","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202502443","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding\",\"authors\":\"Ju-Hyoung Han,&nbsp;Jaeeun Park,&nbsp;Mincheal Kim,&nbsp;Sungwoo Lee,&nbsp;Jin Myeong Heo,&nbsp;Young Ho Jin,&nbsp;Yujin Chae,&nbsp;Juwon Han,&nbsp;Jaewon Wang,&nbsp;Shi-Hyun Seok,&nbsp;Yeoseon Sim,&nbsp;Gangil Byun,&nbsp;Gun-Do Lee,&nbsp;EunMi Choi,&nbsp;Soon-Yong Kwon\",\"doi\":\"10.1002/adma.202502443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Broadband and ultrathin electromagnetic interference (EMI)-shielding materials are crucial for efficient high-frequency data transmission in emerging technologies. MXenes are renowned for their outstanding electrical conductivity and EMI-shielding capability. While substituting nitrogen (N) for carbon (C) atoms in the conventional MXene structure is theoretically expected to enhance these properties, synthesis challenges have hindered progress. Here, it is demonstrated that Ti<i><sub>x</sub></i>C<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub>T<i><sub>z</sub></i> MXene films with optimized N content achieve a record-high electrical conductivity of 35 000 S cm<sup>−1</sup> and exceptional broadband EMI shielding across the X (8–12.4 GHz), K<sub>a</sub> (26.5–40 GHz), and W (75–110 GHz) bands—outperforming all previously reported materials even at reduced thicknesses. By synthesizing a full series of high-stoichiometric Ti<i><sub>x</sub></i>AlC<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub> MAX phases without intermediate phases, the impact of N substitution on the physical and electrical properties of Ti<i><sub>x</sub></i>C<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub>T<i><sub>z</sub></i> MXene flakes is systematically explored, achieving complete composition tunability in both dispersion and film forms. These findings position Ti<i><sub>x</sub></i>C<i><sub>y</sub></i>N<i><sub>x</sub></i><sub>-</sub><i><sub>y</sub></i><sub>-1</sub>T<i><sub>z</sub></i> MXenes as promising candidates for applications spanning from conventional lower-frequency domains to next-generation sub-THz electronics.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 27\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202502443\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502443\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502443","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在新兴技术中,宽带和超薄电磁干扰(EMI)屏蔽材料是实现高效高频数据传输的关键。MXenes以其卓越的导电性和emi屏蔽能力而闻名。虽然用氮(N)取代传统MXene结构中的碳(C)原子理论上有望提高这些性能,但合成方面的挑战阻碍了进展。在这里,研究人员证明,具有优化N含量的TixCyNx-y-1Tz MXene薄膜在X (8-12.4 GHz)、Ka (26.5-40 GHz)和W (75-110 GHz)波段具有创纪录的35000 S cm−1的高导电性,即使在厚度降低的情况下,也优于所有先前报道的材料。通过合成一系列不含中间相的高化学计量TixAlCyNx-y-1 MAX相,系统地探索了N取代对TixCyNx-y-1Tz MXene薄片物理和电学性能的影响,实现了分散和薄膜形式的完全成分可调性。这些发现使TixCyNx-y-1Tz MXenes成为从传统低频域到下一代亚太赫兹电子应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding

Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding

Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding

Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding

Ultrahigh Conductive MXene Films for Broadband Electromagnetic Interference Shielding

Broadband and ultrathin electromagnetic interference (EMI)-shielding materials are crucial for efficient high-frequency data transmission in emerging technologies. MXenes are renowned for their outstanding electrical conductivity and EMI-shielding capability. While substituting nitrogen (N) for carbon (C) atoms in the conventional MXene structure is theoretically expected to enhance these properties, synthesis challenges have hindered progress. Here, it is demonstrated that TixCyNx-y-1Tz MXene films with optimized N content achieve a record-high electrical conductivity of 35 000 S cm−1 and exceptional broadband EMI shielding across the X (8–12.4 GHz), Ka (26.5–40 GHz), and W (75–110 GHz) bands—outperforming all previously reported materials even at reduced thicknesses. By synthesizing a full series of high-stoichiometric TixAlCyNx-y-1 MAX phases without intermediate phases, the impact of N substitution on the physical and electrical properties of TixCyNx-y-1Tz MXene flakes is systematically explored, achieving complete composition tunability in both dispersion and film forms. These findings position TixCyNx-y-1Tz MXenes as promising candidates for applications spanning from conventional lower-frequency domains to next-generation sub-THz electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信