多协议量子密钥分配的多通道元表面

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue Jiang, Rui Zhong, Hu-Lin Zhang, Zheng Wang, Yi-Fei Liu, Ren-Hao Fan, Dong-Xiang Qi, Wen-Jie Tang, Ziyu Wang, Ruwen Peng, Mu Wang
{"title":"多协议量子密钥分配的多通道元表面","authors":"Yue Jiang, Rui Zhong, Hu-Lin Zhang, Zheng Wang, Yi-Fei Liu, Ren-Hao Fan, Dong-Xiang Qi, Wen-Jie Tang, Ziyu Wang, Ruwen Peng, Mu Wang","doi":"10.1021/acs.nanolett.5c00868","DOIUrl":null,"url":null,"abstract":"Multiprotocol quantum key distribution (mQKD) enables users to flexibly select protocols for secure quantum communication, though achieving mQKD introduces considerable system complexity and resource demands. Here, we report the first realization of mQKD using a metasurface, which generates multiple hybrid states of photonic spin angular momentum (SAM) and orbital angular momentum (OAM) and distributes them to different users. The incident polarization-entangled photon pair interacts with the metasurface, producing four SAM–OAM hybrid states with high fidelity through spin–orbit conversion. Among these hybrid states, two execute the BB84 protocol, while the other two perform the BBM92 protocol, all demonstrating high secret key rates and low quantum bit error rates. This approach provides a robust, compact solution for generating and distributing SAM–OAM hybrid states and stands out for the remarkable capability of a metasurface in secured information processing.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"74 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multichannel Metasurface for Multiprotocol Quantum Key Distributions\",\"authors\":\"Yue Jiang, Rui Zhong, Hu-Lin Zhang, Zheng Wang, Yi-Fei Liu, Ren-Hao Fan, Dong-Xiang Qi, Wen-Jie Tang, Ziyu Wang, Ruwen Peng, Mu Wang\",\"doi\":\"10.1021/acs.nanolett.5c00868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiprotocol quantum key distribution (mQKD) enables users to flexibly select protocols for secure quantum communication, though achieving mQKD introduces considerable system complexity and resource demands. Here, we report the first realization of mQKD using a metasurface, which generates multiple hybrid states of photonic spin angular momentum (SAM) and orbital angular momentum (OAM) and distributes them to different users. The incident polarization-entangled photon pair interacts with the metasurface, producing four SAM–OAM hybrid states with high fidelity through spin–orbit conversion. Among these hybrid states, two execute the BB84 protocol, while the other two perform the BBM92 protocol, all demonstrating high secret key rates and low quantum bit error rates. This approach provides a robust, compact solution for generating and distributing SAM–OAM hybrid states and stands out for the remarkable capability of a metasurface in secured information processing.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c00868\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00868","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多协议量子密钥分发(mQKD)使用户能够灵活地选择用于安全量子通信的协议,尽管实现mQKD会引入相当大的系统复杂性和资源需求。本文首次利用超表面实现了mQKD,该超表面产生了光子自旋角动量(SAM)和轨道角动量(OAM)的多个混合态,并将它们分配给不同的用户。入射偏振纠缠光子对与超表面相互作用,通过自旋轨道转换产生4个高保真的SAM-OAM杂化态。在这些混合状态中,两种执行BB84协议,另外两种执行BBM92协议,都表现出高密钥率和低量子误码率。这种方法为生成和分发SAM-OAM混合状态提供了一种健壮、紧凑的解决方案,并因其在安全信息处理中的卓越能力而脱颖而出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multichannel Metasurface for Multiprotocol Quantum Key Distributions

A Multichannel Metasurface for Multiprotocol Quantum Key Distributions
Multiprotocol quantum key distribution (mQKD) enables users to flexibly select protocols for secure quantum communication, though achieving mQKD introduces considerable system complexity and resource demands. Here, we report the first realization of mQKD using a metasurface, which generates multiple hybrid states of photonic spin angular momentum (SAM) and orbital angular momentum (OAM) and distributes them to different users. The incident polarization-entangled photon pair interacts with the metasurface, producing four SAM–OAM hybrid states with high fidelity through spin–orbit conversion. Among these hybrid states, two execute the BB84 protocol, while the other two perform the BBM92 protocol, all demonstrating high secret key rates and low quantum bit error rates. This approach provides a robust, compact solution for generating and distributing SAM–OAM hybrid states and stands out for the remarkable capability of a metasurface in secured information processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信