层状锗硒化合物声子-玻璃电子晶体:提高热电性能的途径

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhen Tong, Yatian Zhang, Thomas Frauenheim, Traian Dumitrică
{"title":"层状锗硒化合物声子-玻璃电子晶体:提高热电性能的途径","authors":"Zhen Tong, Yatian Zhang, Thomas Frauenheim, Traian Dumitrică","doi":"10.1021/acs.nanolett.4c06620","DOIUrl":null,"url":null,"abstract":"The early concept of a “phonon–glass electron–crystal” for enhancing the thermoelectric figure of merit (<i>ZT</i>) is explored theoretically in layered Ge–Se crystals, where phonon transport exhibits glass-like behavior. <i>Ab initio</i> lattice dynamics and the rigid electronic band method project an ultrahigh <i>ZT</i> = 4.04 at 1000 K along the <i>a</i> axis in the high-temperature GeSe<sub>2</sub> phase at an electron doping concentration of 10<sup>20</sup> cm<sup>–3</sup>. Meanwhile, the low-temperature Ge<sub>4</sub>Se<sub>9</sub> phase achieves a high <i>ZT</i> = 2.19 at 600 K along the <i>a</i> axis with an electron doping concentration of 6 × 10<sup>19</sup> cm<sup>–3</sup>. These maximal values reflect the ultralow lattice thermal conductivity, 0.168 W m<sup>–1</sup> K<sup>–1</sup> (GeSe<sub>2</sub>, 1000 K) and 0.289 W m<sup>–1</sup> K<sup>–1</sup> (Ge<sub>4</sub>Se<sub>9</sub>, 600 K), and high power factor at optimized carrier concentrations along the <i>a</i> axis. Our calculations indicate a promising pathway for approaching the early concept of maximizing <i>ZT</i>, by tailoring carrier doping in layered crystals with glass-like phononic transport.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"69 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered Germanium–Selenium Compounds as Phonon–Glass Electron–Crystals: A Pathway to Enhance the Thermoelectric Performance\",\"authors\":\"Zhen Tong, Yatian Zhang, Thomas Frauenheim, Traian Dumitrică\",\"doi\":\"10.1021/acs.nanolett.4c06620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The early concept of a “phonon–glass electron–crystal” for enhancing the thermoelectric figure of merit (<i>ZT</i>) is explored theoretically in layered Ge–Se crystals, where phonon transport exhibits glass-like behavior. <i>Ab initio</i> lattice dynamics and the rigid electronic band method project an ultrahigh <i>ZT</i> = 4.04 at 1000 K along the <i>a</i> axis in the high-temperature GeSe<sub>2</sub> phase at an electron doping concentration of 10<sup>20</sup> cm<sup>–3</sup>. Meanwhile, the low-temperature Ge<sub>4</sub>Se<sub>9</sub> phase achieves a high <i>ZT</i> = 2.19 at 600 K along the <i>a</i> axis with an electron doping concentration of 6 × 10<sup>19</sup> cm<sup>–3</sup>. These maximal values reflect the ultralow lattice thermal conductivity, 0.168 W m<sup>–1</sup> K<sup>–1</sup> (GeSe<sub>2</sub>, 1000 K) and 0.289 W m<sup>–1</sup> K<sup>–1</sup> (Ge<sub>4</sub>Se<sub>9</sub>, 600 K), and high power factor at optimized carrier concentrations along the <i>a</i> axis. Our calculations indicate a promising pathway for approaching the early concept of maximizing <i>ZT</i>, by tailoring carrier doping in layered crystals with glass-like phononic transport.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c06620\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06620","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在层状锗硒晶体中,从理论上探讨了用于增强热电优值(ZT)的“声子-玻璃电子晶体”的早期概念,其中声子输运表现出类似玻璃的行为。从头算晶格动力学和刚性电子带法在电子掺杂浓度为1020 cm-3时,在高温GeSe2相沿a轴1000 K处投射出超高ZT = 4.04。同时,低温Ge4Se9相沿a轴在600 K处达到高ZT = 2.19,电子掺杂浓度为6 × 1019 cm-3。这些最大值反映了极低的晶格热导率,分别为0.168 W m-1 K - 1 (GeSe2, 1000 K)和0.289 W m-1 K - 1 (Ge4Se9, 600 K),以及沿a轴优化载流子浓度时的高功率因数。我们的计算表明,通过在具有玻璃样声子输运的层状晶体中剪裁载流子掺杂,可以实现ZT最大化的早期概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layered Germanium–Selenium Compounds as Phonon–Glass Electron–Crystals: A Pathway to Enhance the Thermoelectric Performance

Layered Germanium–Selenium Compounds as Phonon–Glass Electron–Crystals: A Pathway to Enhance the Thermoelectric Performance
The early concept of a “phonon–glass electron–crystal” for enhancing the thermoelectric figure of merit (ZT) is explored theoretically in layered Ge–Se crystals, where phonon transport exhibits glass-like behavior. Ab initio lattice dynamics and the rigid electronic band method project an ultrahigh ZT = 4.04 at 1000 K along the a axis in the high-temperature GeSe2 phase at an electron doping concentration of 1020 cm–3. Meanwhile, the low-temperature Ge4Se9 phase achieves a high ZT = 2.19 at 600 K along the a axis with an electron doping concentration of 6 × 1019 cm–3. These maximal values reflect the ultralow lattice thermal conductivity, 0.168 W m–1 K–1 (GeSe2, 1000 K) and 0.289 W m–1 K–1 (Ge4Se9, 600 K), and high power factor at optimized carrier concentrations along the a axis. Our calculations indicate a promising pathway for approaching the early concept of maximizing ZT, by tailoring carrier doping in layered crystals with glass-like phononic transport.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信