{"title":"PSAT1损害铁下垂并通过GPX4羟基化降低免疫治疗效果","authors":"Peixiang Zheng, Zhiqiang Hu, Yuli Shen, Lina Gu, Yuan Ouyang, Yuran Duan, Guimei Ji, Bofei Dong, Yanni Lin, Ting Wen, Qi Tian, Yueru Hou, Qimin Zhou, Xue Sun, Xiaohan Chen, Katherine L. Wang, Shudi Luo, Shiqi Wu, Yuening Sun, Min Li, Liwei Xiao, Qingang Wu, Ying Meng, Guijun Liu, Zheng Wang, Xueli Bai, Shengzhong Duan, Yuan Ding, Yanli Bi, Yuhao Wang, Gaopeng Li, Xiaoguang Liu, Zhimin Lu, Xiaohong Wu, Zhiyuan Tang, Daqian Xu","doi":"10.1038/s41589-025-01887-3","DOIUrl":null,"url":null,"abstract":"<p>Tumor cells adapt to the inflammatory tumor microenvironment (TME) and develop resistance to immunotherapy, with ferroptosis being a major form of tumor cell death. However, the mechanisms by which tumor cells coordinate TME stimuli and their unique metabolic traits to evade ferroptosis and develop resistance to immunotherapy remain unclear. Here we showed that interferon-γ (IFNγ)-activated calcium/calmodulin-dependent protein kinase II phosphorylates phosphoserine aminotransferase 1 (PSAT1) at serine 337 (S337), allowing it to interact with glutathione peroxidase 4 (GPX4) and stabilize the protein, counteracting ferroptosis. PSAT1 elevates GPX4 stability by promoting α-ketoglutarate-dependent PHD3-mediated GPX4 proline 159 (P159) hydroxylation, disrupting its binding to HSC70 and inhibiting autophagy-mediated degradation. In mice, reconstitution of PSAT1 S337A or GPX4 P159A promotes ferroptosis and suppresses triple-negative breast cancer (TNBC) progression. Blocking PSAT1 pS337 with CPP elevates IFNγ-induced ferroptosis and enhances the efficacy of programmed cell death protein 1 (PD-1) antibodies in TNBC. Additionally, PSAT1-mediated GPX4 hydroxylation correlates with poor immunotherapy outcomes in patients with TNBC, highlighting PSAT1’s noncanonical role in suppressing ferroptosis and immunotherapy sensitivity.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"33 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSAT1 impairs ferroptosis and reduces immunotherapy efficacy via GPX4 hydroxylation\",\"authors\":\"Peixiang Zheng, Zhiqiang Hu, Yuli Shen, Lina Gu, Yuan Ouyang, Yuran Duan, Guimei Ji, Bofei Dong, Yanni Lin, Ting Wen, Qi Tian, Yueru Hou, Qimin Zhou, Xue Sun, Xiaohan Chen, Katherine L. Wang, Shudi Luo, Shiqi Wu, Yuening Sun, Min Li, Liwei Xiao, Qingang Wu, Ying Meng, Guijun Liu, Zheng Wang, Xueli Bai, Shengzhong Duan, Yuan Ding, Yanli Bi, Yuhao Wang, Gaopeng Li, Xiaoguang Liu, Zhimin Lu, Xiaohong Wu, Zhiyuan Tang, Daqian Xu\",\"doi\":\"10.1038/s41589-025-01887-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tumor cells adapt to the inflammatory tumor microenvironment (TME) and develop resistance to immunotherapy, with ferroptosis being a major form of tumor cell death. However, the mechanisms by which tumor cells coordinate TME stimuli and their unique metabolic traits to evade ferroptosis and develop resistance to immunotherapy remain unclear. Here we showed that interferon-γ (IFNγ)-activated calcium/calmodulin-dependent protein kinase II phosphorylates phosphoserine aminotransferase 1 (PSAT1) at serine 337 (S337), allowing it to interact with glutathione peroxidase 4 (GPX4) and stabilize the protein, counteracting ferroptosis. PSAT1 elevates GPX4 stability by promoting α-ketoglutarate-dependent PHD3-mediated GPX4 proline 159 (P159) hydroxylation, disrupting its binding to HSC70 and inhibiting autophagy-mediated degradation. In mice, reconstitution of PSAT1 S337A or GPX4 P159A promotes ferroptosis and suppresses triple-negative breast cancer (TNBC) progression. Blocking PSAT1 pS337 with CPP elevates IFNγ-induced ferroptosis and enhances the efficacy of programmed cell death protein 1 (PD-1) antibodies in TNBC. Additionally, PSAT1-mediated GPX4 hydroxylation correlates with poor immunotherapy outcomes in patients with TNBC, highlighting PSAT1’s noncanonical role in suppressing ferroptosis and immunotherapy sensitivity.</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-025-01887-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01887-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
PSAT1 impairs ferroptosis and reduces immunotherapy efficacy via GPX4 hydroxylation
Tumor cells adapt to the inflammatory tumor microenvironment (TME) and develop resistance to immunotherapy, with ferroptosis being a major form of tumor cell death. However, the mechanisms by which tumor cells coordinate TME stimuli and their unique metabolic traits to evade ferroptosis and develop resistance to immunotherapy remain unclear. Here we showed that interferon-γ (IFNγ)-activated calcium/calmodulin-dependent protein kinase II phosphorylates phosphoserine aminotransferase 1 (PSAT1) at serine 337 (S337), allowing it to interact with glutathione peroxidase 4 (GPX4) and stabilize the protein, counteracting ferroptosis. PSAT1 elevates GPX4 stability by promoting α-ketoglutarate-dependent PHD3-mediated GPX4 proline 159 (P159) hydroxylation, disrupting its binding to HSC70 and inhibiting autophagy-mediated degradation. In mice, reconstitution of PSAT1 S337A or GPX4 P159A promotes ferroptosis and suppresses triple-negative breast cancer (TNBC) progression. Blocking PSAT1 pS337 with CPP elevates IFNγ-induced ferroptosis and enhances the efficacy of programmed cell death protein 1 (PD-1) antibodies in TNBC. Additionally, PSAT1-mediated GPX4 hydroxylation correlates with poor immunotherapy outcomes in patients with TNBC, highlighting PSAT1’s noncanonical role in suppressing ferroptosis and immunotherapy sensitivity.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.