基于物理的无量纲特征的洪水映射与机器学习

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Mark S. Bartlett, Jared Van Blitterswyk, Martha Farella, Jinshu Li, Curtis Smith, Anthony J. Parolari, Lalitha Krishnamoorthy, Assaad Mrad
{"title":"基于物理的无量纲特征的洪水映射与机器学习","authors":"Mark S. Bartlett, Jared Van Blitterswyk, Martha Farella, Jinshu Li, Curtis Smith, Anthony J. Parolari, Lalitha Krishnamoorthy, Assaad Mrad","doi":"10.1029/2024wr039086","DOIUrl":null,"url":null,"abstract":"Rapid delineation of flash flood extents is critical to mobilize emergency resources and to manage evacuations, thereby saving lives and property. Machine learning (ML) provides a promising solution for this rapid delineation, offering a computationally efficient alternative to high-resolution 2D flood models. However, even when trained on diverse geographic regions, ML models typically require retraining to perform well in new locations, and therefore often fail to generalize to never-before-seen conditions. To improve ML generalization, we apply Buckingham <span data-altimg=\"/cms/asset/9bde1150-4fbb-408d-930e-ecd7898e8c64/wrcr70130-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"419\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70130-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0001\" display=\"inline\" location=\"graphic/wrcr70130-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Π</mi></mrow>${\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> theorem to derive dimensionless terms across multiple spatial scales. These multiscale <span data-altimg=\"/cms/asset/a3860706-f6f9-4f77-9d6c-30863c8d787b/wrcr70130-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"420\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70130-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0002\" display=\"inline\" location=\"graphic/wrcr70130-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Π</mi></mrow>${\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> terms represent ratios of the relevant physical quantities governing the flooding process. Since the scaling laws of these dimensionless <span data-altimg=\"/cms/asset/5e0a194a-3adb-4ff2-8919-56d85ae06691/wrcr70130-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"421\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70130-math-0003.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0003\" display=\"inline\" location=\"graphic/wrcr70130-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Π</mi></mrow>${\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> terms encode process similarity across physical scales, these <span data-altimg=\"/cms/asset/4bb0d008-bff6-4c5b-b03d-0982694021d0/wrcr70130-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"422\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70130-math-0004.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0004\" display=\"inline\" location=\"graphic/wrcr70130-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Π</mi></mrow>${\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> terms enhance ML transferability to unseen locations. This is demonstrated by incorporating them as features in a logistic regression model for delineating flood extents. The features were calculated at different scales by varying accumulation thresholds for stream delineation. The ML flood maps, with an average AUC of 0.89, compared well with the results of 2D hydraulic models that are the basis of the Federal Emergency Management Agency flood hazard maps. The dimensionless <span data-altimg=\"/cms/asset/01b78062-df1a-48df-8a3b-9bce9b1c254c/wrcr70130-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"423\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70130-math-0005.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0005\" display=\"inline\" location=\"graphic/wrcr70130-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Π</mi></mrow>${\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> features outperformed dimensional features, with some of the largest gains in the AUC (of 20%) occurring when the model was trained in one region and tested in another. Dimensionless and multi-scale <span data-altimg=\"/cms/asset/686cd71f-bd66-41ab-ac74-98878de338a6/wrcr70130-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"424\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/wrcr70130-math-0006.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0006\" display=\"inline\" location=\"graphic/wrcr70130-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Pi\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Π</mi></mrow>${\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> features in ML flood modeling have the potential to improve generalization, enabling mapping in unmapped areas and across a broader spectrum of landscapes, climates, and events.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physically Based Dimensionless Features for Pluvial Flood Mapping With Machine Learning\",\"authors\":\"Mark S. Bartlett, Jared Van Blitterswyk, Martha Farella, Jinshu Li, Curtis Smith, Anthony J. Parolari, Lalitha Krishnamoorthy, Assaad Mrad\",\"doi\":\"10.1029/2024wr039086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid delineation of flash flood extents is critical to mobilize emergency resources and to manage evacuations, thereby saving lives and property. Machine learning (ML) provides a promising solution for this rapid delineation, offering a computationally efficient alternative to high-resolution 2D flood models. However, even when trained on diverse geographic regions, ML models typically require retraining to perform well in new locations, and therefore often fail to generalize to never-before-seen conditions. To improve ML generalization, we apply Buckingham <span data-altimg=\\\"/cms/asset/9bde1150-4fbb-408d-930e-ecd7898e8c64/wrcr70130-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"419\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70130-math-0001.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70130-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Π</mi></mrow>${\\\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> theorem to derive dimensionless terms across multiple spatial scales. These multiscale <span data-altimg=\\\"/cms/asset/a3860706-f6f9-4f77-9d6c-30863c8d787b/wrcr70130-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"420\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70130-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70130-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Π</mi></mrow>${\\\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> terms represent ratios of the relevant physical quantities governing the flooding process. Since the scaling laws of these dimensionless <span data-altimg=\\\"/cms/asset/5e0a194a-3adb-4ff2-8919-56d85ae06691/wrcr70130-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"421\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70130-math-0003.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70130-math-0003.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Π</mi></mrow>${\\\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> terms encode process similarity across physical scales, these <span data-altimg=\\\"/cms/asset/4bb0d008-bff6-4c5b-b03d-0982694021d0/wrcr70130-math-0004.png\\\"></span><mjx-container ctxtmenu_counter=\\\"422\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70130-math-0004.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70130-math-0004.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Π</mi></mrow>${\\\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> terms enhance ML transferability to unseen locations. This is demonstrated by incorporating them as features in a logistic regression model for delineating flood extents. The features were calculated at different scales by varying accumulation thresholds for stream delineation. The ML flood maps, with an average AUC of 0.89, compared well with the results of 2D hydraulic models that are the basis of the Federal Emergency Management Agency flood hazard maps. The dimensionless <span data-altimg=\\\"/cms/asset/01b78062-df1a-48df-8a3b-9bce9b1c254c/wrcr70130-math-0005.png\\\"></span><mjx-container ctxtmenu_counter=\\\"423\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70130-math-0005.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70130-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Π</mi></mrow>${\\\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> features outperformed dimensional features, with some of the largest gains in the AUC (of 20%) occurring when the model was trained in one region and tested in another. Dimensionless and multi-scale <span data-altimg=\\\"/cms/asset/686cd71f-bd66-41ab-ac74-98878de338a6/wrcr70130-math-0006.png\\\"></span><mjx-container ctxtmenu_counter=\\\"424\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/wrcr70130-math-0006.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00431397:media:wrcr70130:wrcr70130-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/wrcr70130-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"normal upper Pi\\\" data-semantic-type=\\\"identifier\\\" mathvariant=\\\"normal\\\">Π</mi></mrow>${\\\\Pi }$</annotation></semantics></math></mjx-assistive-mml></mjx-container> features in ML flood modeling have the potential to improve generalization, enabling mapping in unmapped areas and across a broader spectrum of landscapes, climates, and events.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr039086\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039086","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

迅速划定山洪暴发的范围对于调动紧急资源和管理疏散,从而挽救生命和财产至关重要。机器学习(ML)为这种快速描绘提供了一个有前途的解决方案,为高分辨率2D洪水模型提供了计算效率的替代方案。然而,即使在不同的地理区域进行训练,机器学习模型通常也需要重新训练才能在新的位置表现良好,因此通常无法推广到从未见过的条件。为了改进机器学习泛化,我们应用Buckingham Π${\Pi}$定理来推导跨多个空间尺度的无量纲项。这些多尺度Π${\Pi}$项表示控制洪水过程的相关物理量的比率。由于这些无量纲Π${\Pi}$项的标度定律编码了物理尺度上的过程相似性,因此这些Π${\Pi}$项增强了机器学习到未知位置的可转移性。这是通过将它们作为特征纳入描述洪水范围的逻辑回归模型来证明的。在不同尺度下,通过不同的积累阈值来计算特征。ML洪水地图的平均AUC为0.89,与联邦紧急事务管理局洪水灾害地图的基础2D水力模型的结果相比,效果很好。无量纲Π${\Pi}$特征优于有量纲特征,当模型在一个区域训练并在另一个区域测试时,AUC的一些最大增益(20%)发生。ML洪水建模中的无量纲和多尺度Π${\Pi}$特征具有提高泛化的潜力,可以在未映射的区域以及更广泛的景观、气候和事件中进行映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physically Based Dimensionless Features for Pluvial Flood Mapping With Machine Learning
Rapid delineation of flash flood extents is critical to mobilize emergency resources and to manage evacuations, thereby saving lives and property. Machine learning (ML) provides a promising solution for this rapid delineation, offering a computationally efficient alternative to high-resolution 2D flood models. However, even when trained on diverse geographic regions, ML models typically require retraining to perform well in new locations, and therefore often fail to generalize to never-before-seen conditions. To improve ML generalization, we apply Buckingham Π${\Pi }$ theorem to derive dimensionless terms across multiple spatial scales. These multiscale Π${\Pi }$ terms represent ratios of the relevant physical quantities governing the flooding process. Since the scaling laws of these dimensionless Π${\Pi }$ terms encode process similarity across physical scales, these Π${\Pi }$ terms enhance ML transferability to unseen locations. This is demonstrated by incorporating them as features in a logistic regression model for delineating flood extents. The features were calculated at different scales by varying accumulation thresholds for stream delineation. The ML flood maps, with an average AUC of 0.89, compared well with the results of 2D hydraulic models that are the basis of the Federal Emergency Management Agency flood hazard maps. The dimensionless Π${\Pi }$ features outperformed dimensional features, with some of the largest gains in the AUC (of 20%) occurring when the model was trained in one region and tested in another. Dimensionless and multi-scale Π${\Pi }$ features in ML flood modeling have the potential to improve generalization, enabling mapping in unmapped areas and across a broader spectrum of landscapes, climates, and events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信