壁面流动湍流速度矩的有界耗散规律及分布

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xi Chen, Katepalli R. Sreenivasan
{"title":"壁面流动湍流速度矩的有界耗散规律及分布","authors":"Xi Chen, Katepalli R. Sreenivasan","doi":"10.1073/pnas.2502265122","DOIUrl":null,"url":null,"abstract":"Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>u</mml:mi> </mml:math> </jats:inline-formula> are derived in the form <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> </jats:inline-formula> , where the superscript <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mo>+</mml:mo> </mml:math> </jats:inline-formula> indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>q</mml:mi> </mml:math> </jats:inline-formula> is an integer, <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> are constants independent of the friction Reynolds number <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , and <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> is the distance away from the wall, normalized by the flow thickness <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>δ</mml:mi> </mml:math> </jats:inline-formula> . In particular, <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ</mml:mi> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> according to the “linear q-norm Gaussian” process, where <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>μ</mml:mi> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>σ</mml:mi> </mml:math> </jats:inline-formula> are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> . For fixed <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , the present formulation leads to the bounded state <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> as <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> . This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"42 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded dissipation law and profiles of turbulent velocity moments in wall flows\",\"authors\":\"Xi Chen, Katepalli R. Sreenivasan\",\"doi\":\"10.1073/pnas.2502265122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>u</mml:mi> </mml:math> </jats:inline-formula> are derived in the form <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> </jats:inline-formula> , where the superscript <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mo>+</mml:mo> </mml:math> </jats:inline-formula> indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>q</mml:mi> </mml:math> </jats:inline-formula> is an integer, <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> are constants independent of the friction Reynolds number <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , and <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> is the distance away from the wall, normalized by the flow thickness <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>δ</mml:mi> </mml:math> </jats:inline-formula> . In particular, <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ</mml:mi> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> according to the “linear q-norm Gaussian” process, where <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>μ</mml:mi> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>σ</mml:mi> </mml:math> </jats:inline-formula> are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> . For fixed <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , the present formulation leads to the bounded state <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> as <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> . This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2502265122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2502265122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

理解固体边界对湍流波动的影响仍然是一个长期的挑战。这些流动的均方波动的现有数据显示出与经典标度的明显矛盾。我们早先提出了一个基于有界耗散原理的替代模型。尽管它被认为是成功的,但一个结论性的结果需要比目前可用的或在不久的将来可以获得的更高的雷诺数。然而,考虑到高阶矩及其在壁法向上的分布,即使在现有的雷诺数范围内,该模型也可以得到令人满意的验证。表达式高阶速度变动回水区的时刻你是派生形式⟨u + 2 q⟩1 / q q =α−β问y∗1 / 4,上标+显示墙单元正常化,和方括号代表平均值随时间均匀平面正常在墙上,q是一个整数,α和βq是常数独立于摩擦雷诺数R eτ,y * = y / δ是距离壁面的距离,用流动厚度δ归一化。特别地,根据“线性q范数高斯”过程,α q = μ + σ q,其中μ和σ是与流动无关的常数。当1≤q≤5时,该公式与边界层、管道和通道的现有数据非常吻合。对于固定的y + = y∗R e τ,本公式导致⟨u + 2 q⟩1 / q = α q为R e τ→∞。这项工作证明了本模型在描述壁面流动波动行为方面的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded dissipation law and profiles of turbulent velocity moments in wall flows
Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation u are derived in the form u + 2 q 1 / q = α q β q y 1 / 4 , where the superscript + indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, q is an integer, α q and β q are constants independent of the friction Reynolds number R e τ , and y = y / δ is the distance away from the wall, normalized by the flow thickness δ . In particular, α q = μ + σ q according to the “linear q-norm Gaussian” process, where μ and σ are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for 1 q 5 . For fixed y + = y R e τ , the present formulation leads to the bounded state u + 2 q 1 / q = α q as R e τ . This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信