{"title":"壁面流动湍流速度矩的有界耗散规律及分布","authors":"Xi Chen, Katepalli R. Sreenivasan","doi":"10.1073/pnas.2502265122","DOIUrl":null,"url":null,"abstract":"Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>u</mml:mi> </mml:math> </jats:inline-formula> are derived in the form <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> </jats:inline-formula> , where the superscript <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mo>+</mml:mo> </mml:math> </jats:inline-formula> indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>q</mml:mi> </mml:math> </jats:inline-formula> is an integer, <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> are constants independent of the friction Reynolds number <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , and <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> is the distance away from the wall, normalized by the flow thickness <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>δ</mml:mi> </mml:math> </jats:inline-formula> . In particular, <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ</mml:mi> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> according to the “linear q-norm Gaussian” process, where <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>μ</mml:mi> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mi>σ</mml:mi> </mml:math> </jats:inline-formula> are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> . For fixed <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , the present formulation leads to the bounded state <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\"false\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> as <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> . This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"42 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounded dissipation law and profiles of turbulent velocity moments in wall flows\",\"authors\":\"Xi Chen, Katepalli R. Sreenivasan\",\"doi\":\"10.1073/pnas.2502265122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>u</mml:mi> </mml:math> </jats:inline-formula> are derived in the form <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>−</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> </jats:inline-formula> , where the superscript <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mo>+</mml:mo> </mml:math> </jats:inline-formula> indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>q</mml:mi> </mml:math> </jats:inline-formula> is an integer, <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> </jats:inline-formula> are constants independent of the friction Reynolds number <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , and <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mrow> <mml:mrow/> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mi>δ</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> is the distance away from the wall, normalized by the flow thickness <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>δ</mml:mi> </mml:math> </jats:inline-formula> . In particular, <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>σ</mml:mi> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> according to the “linear q-norm Gaussian” process, where <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>μ</mml:mi> </mml:math> </jats:inline-formula> and <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mi>σ</mml:mi> </mml:math> </jats:inline-formula> are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>q</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> </jats:inline-formula> . For fixed <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>+</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> , the present formulation leads to the bounded state <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mo stretchy=\\\"false\\\">⟨</mml:mo> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">⟩</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:mrow> </mml:math> </jats:inline-formula> as <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>τ</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">→</mml:mo> <mml:mi>∞</mml:mi> </mml:mrow> </mml:math> </jats:inline-formula> . This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2502265122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2502265122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Bounded dissipation law and profiles of turbulent velocity moments in wall flows
Understanding the effects of solid boundaries on turbulent fluctuations remains a long-standing challenge. Available data on mean-square fluctuations in these flows show apparent contradiction with classical scaling. We had earlier proposed an alternative model based on the principle of bounded dissipation. Despite its putative success, a conclusive outcome requires much higher Reynolds numbers than are available at present, or can be expected to be available in the near future. However, the model can be validated satisfactorily even within the Reynolds number range already available by considering high-order moments and their distributions in the wall-normal direction. Expressions for high-order moments of streamwise velocity fluctuation u are derived in the form ⟨u+2q⟩1/q=αq−βqy∗1/4 , where the superscript + indicates the wall unit normalization, and brackets stand for averages over time and the homogeneous plane normal to the wall, q is an integer, αq and βq are constants independent of the friction Reynolds number Reτ , and y∗=y/δ is the distance away from the wall, normalized by the flow thickness δ . In particular, αq=μ+σq according to the “linear q-norm Gaussian” process, where μ and σ are flow-independent constants. Excellent agreement is found between this formula and the available data in boundary layers, pipes, and channels for 1≤q≤5 . For fixed y+=y∗Reτ , the present formulation leads to the bounded state ⟨u+2q⟩1/q=αq as Reτ→∞ . This work demonstrates the success of the present model in describing the behavior of fluctuations in wall flows.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.