Weiren Cheng, Ning Ding, Xucheng Zhang, Zhenyu Liu, Xingyu Tang, Wenfu Lin, Yifan Wang, Ziyu Pan, Naiqin Bu, Mingjian You, Xingchen Ji, Yi Li, Qiancheng Zhao
{"title":"利用高质量环形谐振器鉴定绝缘体上磷化镓平台的热光学系数","authors":"Weiren Cheng, Ning Ding, Xucheng Zhang, Zhenyu Liu, Xingyu Tang, Wenfu Lin, Yifan Wang, Ziyu Pan, Naiqin Bu, Mingjian You, Xingchen Ji, Yi Li, Qiancheng Zhao","doi":"10.1063/5.0258133","DOIUrl":null,"url":null,"abstract":"Characterizing a material's thermo-optic coefficient lays the foundation for optimizing thermal tuning of photonic integrated devices, a key feature for applications in optical communication, sensing, and signal processing. Unlike traditional bulk measurements, determining the thermo-optic coefficient (TOC) in microscale photonic devices offers significant advantages in data processing and provides more direct relevance to real-world device performance. In this work, we characterize the TOC of gallium phosphide (GaP) films using an air-cladded ring resonator, built on a GaP-on-insulator (GaP-OI) architecture. The resonator is fabricated via an optimized “etch-n-transfer” process, which incorporates silicon dioxide hard masks to enhance the precision of pattern transfer and improve the waveguide surface cleanliness, reducing defects and ensuring better device performance. The fabricated resonator exhibits a loaded quality factor of (2.18 ± 0.1)×104 at 1550 nm by using contact lithography, with a waveguide propagation loss of 23.8 ± 0.3 dB/cm. At 780 nm, the propagation loss decreases to 16.7 dB/cm. The resonator also shows a temperature-dependent wavelength shift of 65.8 pm/K, allowing us to extract a TOC of 1.19 × 10−4/K for GaP. This high temperature sensitivity empowers the GaP-OI platform particularly well-suited for rapid thermal turning, which is beneficial for a range of applications including optical sensing, optical signal processing, and highly efficient nonlinear conversion.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"14 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing the thermo-optic coefficient of gallium phosphide-on-insulator platform using high-quality ring resonators\",\"authors\":\"Weiren Cheng, Ning Ding, Xucheng Zhang, Zhenyu Liu, Xingyu Tang, Wenfu Lin, Yifan Wang, Ziyu Pan, Naiqin Bu, Mingjian You, Xingchen Ji, Yi Li, Qiancheng Zhao\",\"doi\":\"10.1063/5.0258133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing a material's thermo-optic coefficient lays the foundation for optimizing thermal tuning of photonic integrated devices, a key feature for applications in optical communication, sensing, and signal processing. Unlike traditional bulk measurements, determining the thermo-optic coefficient (TOC) in microscale photonic devices offers significant advantages in data processing and provides more direct relevance to real-world device performance. In this work, we characterize the TOC of gallium phosphide (GaP) films using an air-cladded ring resonator, built on a GaP-on-insulator (GaP-OI) architecture. The resonator is fabricated via an optimized “etch-n-transfer” process, which incorporates silicon dioxide hard masks to enhance the precision of pattern transfer and improve the waveguide surface cleanliness, reducing defects and ensuring better device performance. The fabricated resonator exhibits a loaded quality factor of (2.18 ± 0.1)×104 at 1550 nm by using contact lithography, with a waveguide propagation loss of 23.8 ± 0.3 dB/cm. At 780 nm, the propagation loss decreases to 16.7 dB/cm. The resonator also shows a temperature-dependent wavelength shift of 65.8 pm/K, allowing us to extract a TOC of 1.19 × 10−4/K for GaP. This high temperature sensitivity empowers the GaP-OI platform particularly well-suited for rapid thermal turning, which is beneficial for a range of applications including optical sensing, optical signal processing, and highly efficient nonlinear conversion.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0258133\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0258133","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Characterizing the thermo-optic coefficient of gallium phosphide-on-insulator platform using high-quality ring resonators
Characterizing a material's thermo-optic coefficient lays the foundation for optimizing thermal tuning of photonic integrated devices, a key feature for applications in optical communication, sensing, and signal processing. Unlike traditional bulk measurements, determining the thermo-optic coefficient (TOC) in microscale photonic devices offers significant advantages in data processing and provides more direct relevance to real-world device performance. In this work, we characterize the TOC of gallium phosphide (GaP) films using an air-cladded ring resonator, built on a GaP-on-insulator (GaP-OI) architecture. The resonator is fabricated via an optimized “etch-n-transfer” process, which incorporates silicon dioxide hard masks to enhance the precision of pattern transfer and improve the waveguide surface cleanliness, reducing defects and ensuring better device performance. The fabricated resonator exhibits a loaded quality factor of (2.18 ± 0.1)×104 at 1550 nm by using contact lithography, with a waveguide propagation loss of 23.8 ± 0.3 dB/cm. At 780 nm, the propagation loss decreases to 16.7 dB/cm. The resonator also shows a temperature-dependent wavelength shift of 65.8 pm/K, allowing us to extract a TOC of 1.19 × 10−4/K for GaP. This high temperature sensitivity empowers the GaP-OI platform particularly well-suited for rapid thermal turning, which is beneficial for a range of applications including optical sensing, optical signal processing, and highly efficient nonlinear conversion.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.