{"title":"微生物检测宏基因组cfDNA测序的综合评价。","authors":"Zhenli Diao,Zihong Zhao,Yanxi Han,Yuqing Chen,Tao Huang,Lei Feng,Yu Ma,Jinming Li,Rui Zhang","doi":"10.1093/clinchem/hvaf044","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nMetagenomic cell-free DNA (cfDNA) sequencing provides a new avenue for diagnosing infectious diseases. Owing to the low concentration and highly fragmented nature of microbial cfDNA in plasma, coupled with methodological complexity, ensuring accurate and comparable metagenomic cfDNA sequencing results has proved challenging. This study aims to evaluate the performance of metagenomic cfDNA sequencing for detecting microorganisms in plasma across various laboratories and to examine factors affecting accuracy.\r\n\r\nMETHODS\r\nA reference panel consisting of 18 microbial cfDNA communities was designed and used to investigate the performance of metagenomic cfDNA sequencing across 130 laboratories. We comprehensively assessed the accuracy, repeatability, anti-interference, limit of detection (LoD), and linear correlation.\r\n\r\nRESULTS\r\nThe results showed that the performance of most laboratories was excellent, with an average F1 score of 0.98. Most contamination in metagenomic cfDNA sequencing originated from \"wet labs,\" as 68.25% (475/696) of the false-positive sequences matched reported microorganisms. The chief cause (74.24%, 49/66) of false-negative errors in metagenomic cfDNA sequencing was from \"dry labs.\" Laboratories showed favorable reproducibility, LoD, and linearity. Interference from elevated human cfDNA concentrations was minimal, whereas interference from genetically similar microorganisms was more pronounced. Overall, viral cfDNA detection showed weaker performance compared to bacterial and fungal detection.\r\n\r\nCONCLUSIONS\r\nThis study presented the performance of metagenomic cfDNA sequencing in real-world settings, identifying key factors critical for its development and optimization. These findings provide valuable guidance for accurate pathogen detection in infectious diseases and promote the adoption of metagenomic cfDNA sequencing in diagnostics.","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"48 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Assessment of Metagenomic cfDNA Sequencing for Microbe Detection.\",\"authors\":\"Zhenli Diao,Zihong Zhao,Yanxi Han,Yuqing Chen,Tao Huang,Lei Feng,Yu Ma,Jinming Li,Rui Zhang\",\"doi\":\"10.1093/clinchem/hvaf044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nMetagenomic cell-free DNA (cfDNA) sequencing provides a new avenue for diagnosing infectious diseases. Owing to the low concentration and highly fragmented nature of microbial cfDNA in plasma, coupled with methodological complexity, ensuring accurate and comparable metagenomic cfDNA sequencing results has proved challenging. This study aims to evaluate the performance of metagenomic cfDNA sequencing for detecting microorganisms in plasma across various laboratories and to examine factors affecting accuracy.\\r\\n\\r\\nMETHODS\\r\\nA reference panel consisting of 18 microbial cfDNA communities was designed and used to investigate the performance of metagenomic cfDNA sequencing across 130 laboratories. We comprehensively assessed the accuracy, repeatability, anti-interference, limit of detection (LoD), and linear correlation.\\r\\n\\r\\nRESULTS\\r\\nThe results showed that the performance of most laboratories was excellent, with an average F1 score of 0.98. Most contamination in metagenomic cfDNA sequencing originated from \\\"wet labs,\\\" as 68.25% (475/696) of the false-positive sequences matched reported microorganisms. The chief cause (74.24%, 49/66) of false-negative errors in metagenomic cfDNA sequencing was from \\\"dry labs.\\\" Laboratories showed favorable reproducibility, LoD, and linearity. Interference from elevated human cfDNA concentrations was minimal, whereas interference from genetically similar microorganisms was more pronounced. Overall, viral cfDNA detection showed weaker performance compared to bacterial and fungal detection.\\r\\n\\r\\nCONCLUSIONS\\r\\nThis study presented the performance of metagenomic cfDNA sequencing in real-world settings, identifying key factors critical for its development and optimization. These findings provide valuable guidance for accurate pathogen detection in infectious diseases and promote the adoption of metagenomic cfDNA sequencing in diagnostics.\",\"PeriodicalId\":10690,\"journal\":{\"name\":\"Clinical chemistry\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/clinchem/hvaf044\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvaf044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
A Comprehensive Assessment of Metagenomic cfDNA Sequencing for Microbe Detection.
BACKGROUND
Metagenomic cell-free DNA (cfDNA) sequencing provides a new avenue for diagnosing infectious diseases. Owing to the low concentration and highly fragmented nature of microbial cfDNA in plasma, coupled with methodological complexity, ensuring accurate and comparable metagenomic cfDNA sequencing results has proved challenging. This study aims to evaluate the performance of metagenomic cfDNA sequencing for detecting microorganisms in plasma across various laboratories and to examine factors affecting accuracy.
METHODS
A reference panel consisting of 18 microbial cfDNA communities was designed and used to investigate the performance of metagenomic cfDNA sequencing across 130 laboratories. We comprehensively assessed the accuracy, repeatability, anti-interference, limit of detection (LoD), and linear correlation.
RESULTS
The results showed that the performance of most laboratories was excellent, with an average F1 score of 0.98. Most contamination in metagenomic cfDNA sequencing originated from "wet labs," as 68.25% (475/696) of the false-positive sequences matched reported microorganisms. The chief cause (74.24%, 49/66) of false-negative errors in metagenomic cfDNA sequencing was from "dry labs." Laboratories showed favorable reproducibility, LoD, and linearity. Interference from elevated human cfDNA concentrations was minimal, whereas interference from genetically similar microorganisms was more pronounced. Overall, viral cfDNA detection showed weaker performance compared to bacterial and fungal detection.
CONCLUSIONS
This study presented the performance of metagenomic cfDNA sequencing in real-world settings, identifying key factors critical for its development and optimization. These findings provide valuable guidance for accurate pathogen detection in infectious diseases and promote the adoption of metagenomic cfDNA sequencing in diagnostics.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.