局部多云场景中边界层云能否依靠卫星可见光/红外微物理反演?对气候研究的影响

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
David Painemal, William L. Smith Jr., Siddhant Gupta, Richard Moore, Brian Cairns, Greg M. McFarquhar, Joseph O’Brien
{"title":"局部多云场景中边界层云能否依靠卫星可见光/红外微物理反演?对气候研究的影响","authors":"David Painemal,&nbsp;William L. Smith Jr.,&nbsp;Siddhant Gupta,&nbsp;Richard Moore,&nbsp;Brian Cairns,&nbsp;Greg M. McFarquhar,&nbsp;Joseph O’Brien","doi":"10.1029/2024GL113825","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the longstanding question of the reliability of gridded visible/infrared satellite cloud properties in partially cloudy scenes. By using in-situ cloud probes and airborne Research Scanning Polarimeter (RSP) observations, we analyze bias changes in satellite retrievals from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) geostationary sensor during the ORACLES campaign. Biases in cloud optical depth (<i>τ</i>) and droplet effective radius (<i>r</i><sub><i>e</i></sub>) modestly change for cloud area fraction greater than 35%. The agreement between SEVIRI and RSP <i>r</i><sub><i>e</i></sub> substantially improves when the retrievals are averaged after removing pixels with <i>τ</i> &lt; 3.0, yielding biases indistinguishable from overcast scenes. In addition, satellite and RSP show an excellent agreement for closed- and open-cell stratocumulus clouds, showing that the satellite retrievals capture spatial changes of <i>r</i><sub><i>e</i></sub>, and confirming that satellites can faithfully reproduce real physical features for optically thick and partially cloudy scenes. We demonstrate that a simple methodology can minimize uncertainties in satellite-based climate studies.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113825","citationCount":"0","resultStr":"{\"title\":\"Can We Rely on Satellite Visible/Infrared Microphysical Retrievals of Boundary Layer Clouds in Partially Cloudy Scenes? Implications for Climate Research\",\"authors\":\"David Painemal,&nbsp;William L. Smith Jr.,&nbsp;Siddhant Gupta,&nbsp;Richard Moore,&nbsp;Brian Cairns,&nbsp;Greg M. McFarquhar,&nbsp;Joseph O’Brien\",\"doi\":\"10.1029/2024GL113825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the longstanding question of the reliability of gridded visible/infrared satellite cloud properties in partially cloudy scenes. By using in-situ cloud probes and airborne Research Scanning Polarimeter (RSP) observations, we analyze bias changes in satellite retrievals from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) geostationary sensor during the ORACLES campaign. Biases in cloud optical depth (<i>τ</i>) and droplet effective radius (<i>r</i><sub><i>e</i></sub>) modestly change for cloud area fraction greater than 35%. The agreement between SEVIRI and RSP <i>r</i><sub><i>e</i></sub> substantially improves when the retrievals are averaged after removing pixels with <i>τ</i> &lt; 3.0, yielding biases indistinguishable from overcast scenes. In addition, satellite and RSP show an excellent agreement for closed- and open-cell stratocumulus clouds, showing that the satellite retrievals capture spatial changes of <i>r</i><sub><i>e</i></sub>, and confirming that satellites can faithfully reproduce real physical features for optically thick and partially cloudy scenes. We demonstrate that a simple methodology can minimize uncertainties in satellite-based climate studies.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113825\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113825\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113825","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了长期以来一直存在的问题,即部分多云场景中网格化可见光/红外卫星云属性的可靠性。通过使用原地云探测和机载研究扫描偏振计(RSP)观测数据,我们分析了在 ORACLES 活动期间旋转增强可见光红外成像仪(SEVIRI)地球静止传感器卫星检索的偏差变化。云光学深度(τ)和液滴有效半径(re)的偏差在云面积分数大于 35% 时变化不大。当剔除τ < 3.0的像素后进行平均检索时,SEVIRI和RSP re之间的一致性大大提高,产生的偏差与阴天场景无异。此外,卫星和 RSP 对闭合和开放层积云显示出极好的一致性,表明卫星检索捕捉到了再的空间变化,并证实卫星能够忠实地再现光学厚和部分多云场景的真实物理特征。我们证明,在基于卫星的气候研究中,一种简单的方法可以最大限度地减少不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Can We Rely on Satellite Visible/Infrared Microphysical Retrievals of Boundary Layer Clouds in Partially Cloudy Scenes? Implications for Climate Research

Can We Rely on Satellite Visible/Infrared Microphysical Retrievals of Boundary Layer Clouds in Partially Cloudy Scenes? Implications for Climate Research

This study addresses the longstanding question of the reliability of gridded visible/infrared satellite cloud properties in partially cloudy scenes. By using in-situ cloud probes and airborne Research Scanning Polarimeter (RSP) observations, we analyze bias changes in satellite retrievals from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) geostationary sensor during the ORACLES campaign. Biases in cloud optical depth (τ) and droplet effective radius (re) modestly change for cloud area fraction greater than 35%. The agreement between SEVIRI and RSP re substantially improves when the retrievals are averaged after removing pixels with τ < 3.0, yielding biases indistinguishable from overcast scenes. In addition, satellite and RSP show an excellent agreement for closed- and open-cell stratocumulus clouds, showing that the satellite retrievals capture spatial changes of re, and confirming that satellites can faithfully reproduce real physical features for optically thick and partially cloudy scenes. We demonstrate that a simple methodology can minimize uncertainties in satellite-based climate studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信