K. L. Barnes, A. C. Jones, P. D. Williams, J. M. Haywood
{"title":"平流层气溶胶注入下跨大西洋地区冬季晴空湍流的减少","authors":"K. L. Barnes, A. C. Jones, P. D. Williams, J. M. Haywood","doi":"10.1029/2024GL113627","DOIUrl":null,"url":null,"abstract":"<p>Clear air turbulence (CAT) is a safety threat within the aviation sector and is projected to worsen under global warming. Stratospheric aerosol injection (SAI) is a climate intervention strategy that aims to ameliorate climate change by artificially cooling Earth. Climate model simulations have found a side-effect of SAI would be a strengthening of the positive phase of the North Atlantic Oscillation (NAO). This links to a stronger North Atlantic jet stream and suggests enhanced CAT in the region. Here, we analyze simulations from the UKESM1 climate model to evaluate the impact of a realistic SAI application on winter-time trans-Atlantic CAT. We find a 23% decrease in severe CAT frequency under SAI when compared to a baseline high-end global warming scenario. Our results indicate that the amelioration of global warming under SAI has a more dominant impact on CAT over the North Atlantic than residual impacts to the NAO.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113627","citationCount":"0","resultStr":"{\"title\":\"Reduced Winter-Time Clear Air Turbulence in the Trans-Atlantic Region Under Stratospheric Aerosol Injection\",\"authors\":\"K. L. Barnes, A. C. Jones, P. D. Williams, J. M. Haywood\",\"doi\":\"10.1029/2024GL113627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clear air turbulence (CAT) is a safety threat within the aviation sector and is projected to worsen under global warming. Stratospheric aerosol injection (SAI) is a climate intervention strategy that aims to ameliorate climate change by artificially cooling Earth. Climate model simulations have found a side-effect of SAI would be a strengthening of the positive phase of the North Atlantic Oscillation (NAO). This links to a stronger North Atlantic jet stream and suggests enhanced CAT in the region. Here, we analyze simulations from the UKESM1 climate model to evaluate the impact of a realistic SAI application on winter-time trans-Atlantic CAT. We find a 23% decrease in severe CAT frequency under SAI when compared to a baseline high-end global warming scenario. Our results indicate that the amelioration of global warming under SAI has a more dominant impact on CAT over the North Atlantic than residual impacts to the NAO.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113627\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113627\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113627","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Reduced Winter-Time Clear Air Turbulence in the Trans-Atlantic Region Under Stratospheric Aerosol Injection
Clear air turbulence (CAT) is a safety threat within the aviation sector and is projected to worsen under global warming. Stratospheric aerosol injection (SAI) is a climate intervention strategy that aims to ameliorate climate change by artificially cooling Earth. Climate model simulations have found a side-effect of SAI would be a strengthening of the positive phase of the North Atlantic Oscillation (NAO). This links to a stronger North Atlantic jet stream and suggests enhanced CAT in the region. Here, we analyze simulations from the UKESM1 climate model to evaluate the impact of a realistic SAI application on winter-time trans-Atlantic CAT. We find a 23% decrease in severe CAT frequency under SAI when compared to a baseline high-end global warming scenario. Our results indicate that the amelioration of global warming under SAI has a more dominant impact on CAT over the North Atlantic than residual impacts to the NAO.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.