Mohammad Afzal Shadab, Eric Hiatt, Rickbir Singh Bahia, Eleni V. Bohacek, Vilmos Steinmann, Marc Andre Hesse
{"title":"早期火星的入渗动力学:地貌、气候和水储存的影响","authors":"Mohammad Afzal Shadab, Eric Hiatt, Rickbir Singh Bahia, Eleni V. Bohacek, Vilmos Steinmann, Marc Andre Hesse","doi":"10.1029/2024GL111939","DOIUrl":null,"url":null,"abstract":"<p>On early Mars, the integration of surface, groundwater, and climate systems into an integrated hydrological system remains poorly understood. The partitioning of precipitation, between surface and groundwater via infiltration, controls the Martian aquifer recharge rates and, subsequently, surface erosion processes. We investigate infiltration at two scales, near-surface and deep crustal. We estimate infiltration timescales, revealing that near-surface water loss enhances aeolian erosion over short periods (hours to days). Deep crustal recharge, which requires decades to centuries, affects the deep aquifer response and the water budget. Martian crustal heterogeneity influences infiltration dynamics and runoff production making them dependent on the duration of precipitation. This interaction suggests that the responses of the aquifers to recharge events and groundwater upwelling likely lag behind climate optimum conditions. The accommodation space between topography and aquifer influences Mars' water budget by transiently sequestering water, thus limiting the available water for surface evaporation and inclusion in climate dynamics.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111939","citationCount":"0","resultStr":"{\"title\":\"Infiltration Dynamics on Early Mars: Geomorphic, Climatic, and Water Storage Implications\",\"authors\":\"Mohammad Afzal Shadab, Eric Hiatt, Rickbir Singh Bahia, Eleni V. Bohacek, Vilmos Steinmann, Marc Andre Hesse\",\"doi\":\"10.1029/2024GL111939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On early Mars, the integration of surface, groundwater, and climate systems into an integrated hydrological system remains poorly understood. The partitioning of precipitation, between surface and groundwater via infiltration, controls the Martian aquifer recharge rates and, subsequently, surface erosion processes. We investigate infiltration at two scales, near-surface and deep crustal. We estimate infiltration timescales, revealing that near-surface water loss enhances aeolian erosion over short periods (hours to days). Deep crustal recharge, which requires decades to centuries, affects the deep aquifer response and the water budget. Martian crustal heterogeneity influences infiltration dynamics and runoff production making them dependent on the duration of precipitation. This interaction suggests that the responses of the aquifers to recharge events and groundwater upwelling likely lag behind climate optimum conditions. The accommodation space between topography and aquifer influences Mars' water budget by transiently sequestering water, thus limiting the available water for surface evaporation and inclusion in climate dynamics.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111939\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111939\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111939","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Infiltration Dynamics on Early Mars: Geomorphic, Climatic, and Water Storage Implications
On early Mars, the integration of surface, groundwater, and climate systems into an integrated hydrological system remains poorly understood. The partitioning of precipitation, between surface and groundwater via infiltration, controls the Martian aquifer recharge rates and, subsequently, surface erosion processes. We investigate infiltration at two scales, near-surface and deep crustal. We estimate infiltration timescales, revealing that near-surface water loss enhances aeolian erosion over short periods (hours to days). Deep crustal recharge, which requires decades to centuries, affects the deep aquifer response and the water budget. Martian crustal heterogeneity influences infiltration dynamics and runoff production making them dependent on the duration of precipitation. This interaction suggests that the responses of the aquifers to recharge events and groundwater upwelling likely lag behind climate optimum conditions. The accommodation space between topography and aquifer influences Mars' water budget by transiently sequestering water, thus limiting the available water for surface evaporation and inclusion in climate dynamics.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.