流体非均质性控制拓扑复杂岩石的溶蚀动力学

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Z. Kanavas, J. Jimenez-Martinez, F. Miele, J. Nimmo, V. L. Morales
{"title":"流体非均质性控制拓扑复杂岩石的溶蚀动力学","authors":"Z. Kanavas,&nbsp;J. Jimenez-Martinez,&nbsp;F. Miele,&nbsp;J. Nimmo,&nbsp;V. L. Morales","doi":"10.1029/2024GL114369","DOIUrl":null,"url":null,"abstract":"<p>Rock dissolution is a common subsurface geochemical reaction affecting pore space properties, crucial for reservoir stimulation, carbon storage, and geothermal energy. Predictive models for dissolution remain limited due to incomplete understanding of the mechanisms involved. We examine the influence of flow, transport, and reaction regimes on mineral dissolution using 29 time-resolved data from 3D rocks. We find that initial pore structure significantly influences the dissolution pattern, with reaction rates up to two orders of magnitude lower than batch conditions, given solute and fluid-solid boundary constraints. Flow unevenness determines the location and rate of dissolution. We propose two models describing expected dissolution patterns and effective reaction rates based on dimensionless metrics for flow, transport, and reaction. Finally, we analyze feedback between evolving flow and pore structure to understand conditions that regulate/reinforce dissolution hotspots. Our findings underscore the major impact of flow arrangement on reaction-front propagation and provide a foundation for controlling dissolution hotspots.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114369","citationCount":"0","resultStr":"{\"title\":\"Flow Heterogeneity Controls Dissolution Dynamics in Topologically Complex Rocks\",\"authors\":\"Z. Kanavas,&nbsp;J. Jimenez-Martinez,&nbsp;F. Miele,&nbsp;J. Nimmo,&nbsp;V. L. Morales\",\"doi\":\"10.1029/2024GL114369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rock dissolution is a common subsurface geochemical reaction affecting pore space properties, crucial for reservoir stimulation, carbon storage, and geothermal energy. Predictive models for dissolution remain limited due to incomplete understanding of the mechanisms involved. We examine the influence of flow, transport, and reaction regimes on mineral dissolution using 29 time-resolved data from 3D rocks. We find that initial pore structure significantly influences the dissolution pattern, with reaction rates up to two orders of magnitude lower than batch conditions, given solute and fluid-solid boundary constraints. Flow unevenness determines the location and rate of dissolution. We propose two models describing expected dissolution patterns and effective reaction rates based on dimensionless metrics for flow, transport, and reaction. Finally, we analyze feedback between evolving flow and pore structure to understand conditions that regulate/reinforce dissolution hotspots. Our findings underscore the major impact of flow arrangement on reaction-front propagation and provide a foundation for controlling dissolution hotspots.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114369\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114369\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114369","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

岩石溶蚀是一种常见的地下地球化学反应,影响孔隙空间性质,对储层增产、碳储存和地热能至关重要。由于对所涉及的机制的不完全了解,溶解的预测模型仍然有限。我们使用来自3D岩石的29个时间分辨数据来研究流动、输运和反应机制对矿物溶解的影响。我们发现初始孔隙结构显著影响溶解模式,在给定溶质和流固边界约束的条件下,反应速率比批处理条件低两个数量级。流动不均匀性决定了溶解的位置和速率。我们提出了两个模型描述预期的溶解模式和有效的反应速率基于无量纲指标的流动,运输和反应。最后,我们分析了流动和孔隙结构之间的反馈,以了解调节/加强溶解热点的条件。研究结果强调了流动安排对反应前沿传播的主要影响,为控制溶解热点提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flow Heterogeneity Controls Dissolution Dynamics in Topologically Complex Rocks

Flow Heterogeneity Controls Dissolution Dynamics in Topologically Complex Rocks

Rock dissolution is a common subsurface geochemical reaction affecting pore space properties, crucial for reservoir stimulation, carbon storage, and geothermal energy. Predictive models for dissolution remain limited due to incomplete understanding of the mechanisms involved. We examine the influence of flow, transport, and reaction regimes on mineral dissolution using 29 time-resolved data from 3D rocks. We find that initial pore structure significantly influences the dissolution pattern, with reaction rates up to two orders of magnitude lower than batch conditions, given solute and fluid-solid boundary constraints. Flow unevenness determines the location and rate of dissolution. We propose two models describing expected dissolution patterns and effective reaction rates based on dimensionless metrics for flow, transport, and reaction. Finally, we analyze feedback between evolving flow and pore structure to understand conditions that regulate/reinforce dissolution hotspots. Our findings underscore the major impact of flow arrangement on reaction-front propagation and provide a foundation for controlling dissolution hotspots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信