基于机器学习的药物毒性预测(科学进展16/2025)

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Changsen Bai, Lianlian Wu, Ruijiang Li, Yang Cao, Song He, Xiaochen Bo
{"title":"基于机器学习的药物毒性预测(科学进展16/2025)","authors":"Changsen Bai,&nbsp;Lianlian Wu,&nbsp;Ruijiang Li,&nbsp;Yang Cao,&nbsp;Song He,&nbsp;Xiaochen Bo","doi":"10.1002/advs.202570112","DOIUrl":null,"url":null,"abstract":"<p><b>Machine Learning</b></p><p>In article number 2413405, Yang Cao, Song He, Xiaochen Bo, and co-workers present the transformative role of artificial intelligence (AI) in drug toxicity prediction. AI models leverage the structural and multiomics features of drugs to predict toxicity while enhancing interpretability, bridging the gap between predictive accuracy and mechanistic understanding. It highlights AI's potential to revolutionize toxicological research and drug development, offering new avenues for safer, more effective therapies.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 16","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202570112","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Enabled Drug-Induced Toxicity Prediction (Adv. Sci. 16/2025)\",\"authors\":\"Changsen Bai,&nbsp;Lianlian Wu,&nbsp;Ruijiang Li,&nbsp;Yang Cao,&nbsp;Song He,&nbsp;Xiaochen Bo\",\"doi\":\"10.1002/advs.202570112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Machine Learning</b></p><p>In article number 2413405, Yang Cao, Song He, Xiaochen Bo, and co-workers present the transformative role of artificial intelligence (AI) in drug toxicity prediction. AI models leverage the structural and multiomics features of drugs to predict toxicity while enhancing interpretability, bridging the gap between predictive accuracy and mechanistic understanding. It highlights AI's potential to revolutionize toxicological research and drug development, offering new avenues for safer, more effective therapies.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 16\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202570112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202570112\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202570112","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在第2413405篇文章中,曹阳、何嵩、薄晓晨及其同事介绍了人工智能(AI)在药物毒性预测中的革命性作用。人工智能模型利用药物的结构和多组学特征来预测毒性,同时增强可解释性,弥合预测准确性和机制理解之间的差距。它强调了人工智能在毒理学研究和药物开发方面的革命性潜力,为更安全、更有效的治疗提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Enabled Drug-Induced Toxicity Prediction (Adv. Sci. 16/2025)

Machine Learning-Enabled Drug-Induced Toxicity Prediction (Adv. Sci. 16/2025)

Machine Learning

In article number 2413405, Yang Cao, Song He, Xiaochen Bo, and co-workers present the transformative role of artificial intelligence (AI) in drug toxicity prediction. AI models leverage the structural and multiomics features of drugs to predict toxicity while enhancing interpretability, bridging the gap between predictive accuracy and mechanistic understanding. It highlights AI's potential to revolutionize toxicological research and drug development, offering new avenues for safer, more effective therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信