进化鱼中枢神经系统Pax6和Pax7的综合表达分析

IF 2.3 4区 医学 Q3 NEUROSCIENCES
Daniel Lozano, Adrián Chinarro, Lucía Yanguas, Ruth Morona, Nerea Moreno, Jesús M. López
{"title":"进化鱼中枢神经系统Pax6和Pax7的综合表达分析","authors":"Daniel Lozano,&nbsp;Adrián Chinarro,&nbsp;Lucía Yanguas,&nbsp;Ruth Morona,&nbsp;Nerea Moreno,&nbsp;Jesús M. López","doi":"10.1002/cne.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Among actinopterygian fishes, cladistians stand as the more basal extant species in the group, holding a key phylogenetic position close to the common ancestor of Osteichthyes. Despite the recent publication of studies regarding the neurochemical organization of their central nervous system (CNS), there is still a significant lack of genoarchitectonic data that may prove essential to fully understand the patterning of the brain of these fishes. The paired box genes Pax6 and Pax7 are known to determine several boundaries in the CNS and are indispensable, for instance, for the survival of neurons and the change from cell proliferation to cell differentiation. By means of immunohistofluorescence methods, we analyzed the expression patterns of the transcription factors Pax6 and Pax7 in the CNS of three representative species of cladistian fishes, with a particular focus on their evolutionary implications. Thus, conserved Pax6 immunoreactive cell groups were present in the olfactory bulb, subpallial areas, the prethalamus, the basal prosomere 3, the pretectum, the mesencephalic tegmentum, the cerebellum, the basal rhombencephalon, the spinal cord, and the retina. A number of exclusive features were identified, including the almost total absence of expression in the pallium, which was observed only in cladistians, and its absence in the hypothalamus, which is a primitive anamniote trait. Likewise, the Pax7 expression pattern was generally conserved, with traits like the absence of labeling in the telencephalon and the expression in the retromamillary hypothalamic domain, the basal prosomere 3, the pretectum, the optic tectum, and the alar part of the first rhombomere. Additionally, no Pax7 labeling was detected in the spinal cord, comprising a specific cladistian feature.</p>\n </div>","PeriodicalId":15552,"journal":{"name":"Journal of Comparative Neurology","volume":"533 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pax6 and Pax7 in the Central Nervous System of Cladistian Fishes: A Comprehensive Expression Analysis\",\"authors\":\"Daniel Lozano,&nbsp;Adrián Chinarro,&nbsp;Lucía Yanguas,&nbsp;Ruth Morona,&nbsp;Nerea Moreno,&nbsp;Jesús M. López\",\"doi\":\"10.1002/cne.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Among actinopterygian fishes, cladistians stand as the more basal extant species in the group, holding a key phylogenetic position close to the common ancestor of Osteichthyes. Despite the recent publication of studies regarding the neurochemical organization of their central nervous system (CNS), there is still a significant lack of genoarchitectonic data that may prove essential to fully understand the patterning of the brain of these fishes. The paired box genes Pax6 and Pax7 are known to determine several boundaries in the CNS and are indispensable, for instance, for the survival of neurons and the change from cell proliferation to cell differentiation. By means of immunohistofluorescence methods, we analyzed the expression patterns of the transcription factors Pax6 and Pax7 in the CNS of three representative species of cladistian fishes, with a particular focus on their evolutionary implications. Thus, conserved Pax6 immunoreactive cell groups were present in the olfactory bulb, subpallial areas, the prethalamus, the basal prosomere 3, the pretectum, the mesencephalic tegmentum, the cerebellum, the basal rhombencephalon, the spinal cord, and the retina. A number of exclusive features were identified, including the almost total absence of expression in the pallium, which was observed only in cladistians, and its absence in the hypothalamus, which is a primitive anamniote trait. Likewise, the Pax7 expression pattern was generally conserved, with traits like the absence of labeling in the telencephalon and the expression in the retromamillary hypothalamic domain, the basal prosomere 3, the pretectum, the optic tectum, and the alar part of the first rhombomere. Additionally, no Pax7 labeling was detected in the spinal cord, comprising a specific cladistian feature.</p>\\n </div>\",\"PeriodicalId\":15552,\"journal\":{\"name\":\"Journal of Comparative Neurology\",\"volume\":\"533 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cne.70053\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Neurology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cne.70053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在放线鱼科鱼类中,枝鱼是现存的最基础的物种,在系统发育上的关键位置接近于骨鱼科的共同祖先。尽管最近发表了关于其中枢神经系统(CNS)的神经化学组织的研究,但仍然严重缺乏基因结构数据,这些数据可能证明对充分了解这些鱼类的大脑模式至关重要。已知成对的盒子基因Pax6和Pax7在中枢神经系统中决定了几个边界,并且对于神经元的存活和从细胞增殖到细胞分化的变化是不可或缺的。利用免疫组织荧光法,分析了3种典型分支鱼中枢神经系统中转录因子Pax6和Pax7的表达模式,并重点研究了它们的进化意义。因此,保守的Pax6免疫反应细胞组存在于嗅球、pallial下区、丘脑前庭、基底前体3、前顶盖、中脑被、小脑、基底横脑、脊髓和视网膜。许多独特的特征被确定,包括在白质中几乎完全没有表达,这只在枝虫中观察到,以及在下丘脑中没有表达,这是一个原始羊膜动物的特征。同样,Pax7的表达模式也普遍保守,在端脑中没有标记,在乳头后下丘脑区域、基底前体3、前顶盖、视顶盖和第一斜球的鼻翼部分表达。此外,在脊髓中未检测到Pax7标记,包括特定的分支特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pax6 and Pax7 in the Central Nervous System of Cladistian Fishes: A Comprehensive Expression Analysis

Pax6 and Pax7 in the Central Nervous System of Cladistian Fishes: A Comprehensive Expression Analysis

Among actinopterygian fishes, cladistians stand as the more basal extant species in the group, holding a key phylogenetic position close to the common ancestor of Osteichthyes. Despite the recent publication of studies regarding the neurochemical organization of their central nervous system (CNS), there is still a significant lack of genoarchitectonic data that may prove essential to fully understand the patterning of the brain of these fishes. The paired box genes Pax6 and Pax7 are known to determine several boundaries in the CNS and are indispensable, for instance, for the survival of neurons and the change from cell proliferation to cell differentiation. By means of immunohistofluorescence methods, we analyzed the expression patterns of the transcription factors Pax6 and Pax7 in the CNS of three representative species of cladistian fishes, with a particular focus on their evolutionary implications. Thus, conserved Pax6 immunoreactive cell groups were present in the olfactory bulb, subpallial areas, the prethalamus, the basal prosomere 3, the pretectum, the mesencephalic tegmentum, the cerebellum, the basal rhombencephalon, the spinal cord, and the retina. A number of exclusive features were identified, including the almost total absence of expression in the pallium, which was observed only in cladistians, and its absence in the hypothalamus, which is a primitive anamniote trait. Likewise, the Pax7 expression pattern was generally conserved, with traits like the absence of labeling in the telencephalon and the expression in the retromamillary hypothalamic domain, the basal prosomere 3, the pretectum, the optic tectum, and the alar part of the first rhombomere. Additionally, no Pax7 labeling was detected in the spinal cord, comprising a specific cladistian feature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
8.00%
发文量
158
审稿时长
3-6 weeks
期刊介绍: Established in 1891, JCN is the oldest continually published basic neuroscience journal. Historically, as the name suggests, the journal focused on a comparison among species to uncover the intricacies of how the brain functions. In modern times, this research is called systems neuroscience where animal models are used to mimic core cognitive processes with the ultimate goal of understanding neural circuits and connections that give rise to behavioral patterns and different neural states. Research published in JCN covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of nervous systems in species with an emphasis on the way that species adaptations inform about the function or organization of the nervous systems, rather than on their evolution per se. JCN publishes primary research articles and critical commentaries and review-type articles offering expert insight in to cutting edge research in the field of systems neuroscience; a complete list of contribution types is given in the Author Guidelines. For primary research contributions, only full-length investigative reports are desired; the journal does not accept short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信