Emiko J. Muraki, Penny M. Pexman, Richard J. Binney
{"title":"前时间语义中枢在抽象动词和具体动词加工中的映射作用","authors":"Emiko J. Muraki, Penny M. Pexman, Richard J. Binney","doi":"10.1002/hbm.70210","DOIUrl":null,"url":null,"abstract":"<p>Multiple representation theories of semantic processing propose that word meaning is supported by simulated sensorimotor experience in modality-specific neural regions, as well as in cognitive systems that involve processing of linguistic, emotional, and introspective information. According to the hub-and-spoke model of semantic memory, activity from these distributed cortical areas feeds into a primary semantic hub located in the ventral anterior temporal lobe (vATL). In the present pre-registered study, we examined whether different types of abstract verbs (mental, emotional and nonembodied) and concrete (embodied) verbs all engage the vATL, and also whether they differentially recruit a broader set of distributed neurocognitive systems (consistent with multiple representation theories). Finally, we investigated whether there is information about different verb types distributed across the broader ATL region, consistent with a Graded Semantic Hub Hypothesis. We collected data from 30 participants who completed a syntactic classification task (is it a verb? Yes or no) and a numerical judgment task which served as an active but less semantic baseline task. Whole brain univariate analyses revealed consistent BOLD signal throughout the canonical semantic network, including the left inferior frontal gyrus, left middle temporal gyrus, and the vATL. All types of abstract verbs engaged the vATL except for mental state verbs. Finally, a multivariate pattern analysis revealed clusters within the ATL that were differentially engaged when processing each type of abstract verb. Our findings extend previous research and suggest that the hub-and-spoke hypothesis and the graded semantic hub hypothesis provide a neurobiologically constrained model of semantics that can account for abstract verb representation and processing.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70210","citationCount":"0","resultStr":"{\"title\":\"Mapping Contributions of the Anterior Temporal Semantic Hub to the Processing of Abstract and Concrete Verbs\",\"authors\":\"Emiko J. Muraki, Penny M. Pexman, Richard J. Binney\",\"doi\":\"10.1002/hbm.70210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple representation theories of semantic processing propose that word meaning is supported by simulated sensorimotor experience in modality-specific neural regions, as well as in cognitive systems that involve processing of linguistic, emotional, and introspective information. According to the hub-and-spoke model of semantic memory, activity from these distributed cortical areas feeds into a primary semantic hub located in the ventral anterior temporal lobe (vATL). In the present pre-registered study, we examined whether different types of abstract verbs (mental, emotional and nonembodied) and concrete (embodied) verbs all engage the vATL, and also whether they differentially recruit a broader set of distributed neurocognitive systems (consistent with multiple representation theories). Finally, we investigated whether there is information about different verb types distributed across the broader ATL region, consistent with a Graded Semantic Hub Hypothesis. We collected data from 30 participants who completed a syntactic classification task (is it a verb? Yes or no) and a numerical judgment task which served as an active but less semantic baseline task. Whole brain univariate analyses revealed consistent BOLD signal throughout the canonical semantic network, including the left inferior frontal gyrus, left middle temporal gyrus, and the vATL. All types of abstract verbs engaged the vATL except for mental state verbs. Finally, a multivariate pattern analysis revealed clusters within the ATL that were differentially engaged when processing each type of abstract verb. Our findings extend previous research and suggest that the hub-and-spoke hypothesis and the graded semantic hub hypothesis provide a neurobiologically constrained model of semantics that can account for abstract verb representation and processing.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70210\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70210\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Mapping Contributions of the Anterior Temporal Semantic Hub to the Processing of Abstract and Concrete Verbs
Multiple representation theories of semantic processing propose that word meaning is supported by simulated sensorimotor experience in modality-specific neural regions, as well as in cognitive systems that involve processing of linguistic, emotional, and introspective information. According to the hub-and-spoke model of semantic memory, activity from these distributed cortical areas feeds into a primary semantic hub located in the ventral anterior temporal lobe (vATL). In the present pre-registered study, we examined whether different types of abstract verbs (mental, emotional and nonembodied) and concrete (embodied) verbs all engage the vATL, and also whether they differentially recruit a broader set of distributed neurocognitive systems (consistent with multiple representation theories). Finally, we investigated whether there is information about different verb types distributed across the broader ATL region, consistent with a Graded Semantic Hub Hypothesis. We collected data from 30 participants who completed a syntactic classification task (is it a verb? Yes or no) and a numerical judgment task which served as an active but less semantic baseline task. Whole brain univariate analyses revealed consistent BOLD signal throughout the canonical semantic network, including the left inferior frontal gyrus, left middle temporal gyrus, and the vATL. All types of abstract verbs engaged the vATL except for mental state verbs. Finally, a multivariate pattern analysis revealed clusters within the ATL that were differentially engaged when processing each type of abstract verb. Our findings extend previous research and suggest that the hub-and-spoke hypothesis and the graded semantic hub hypothesis provide a neurobiologically constrained model of semantics that can account for abstract verb representation and processing.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.