2017年9月6日X9.3耀斑垂直电流演化分析

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Haili Li, Xiaofeng Deng, Hongfei Liang, Xinping Zhou, Yu Liu, Zhongquan Qu
{"title":"2017年9月6日X9.3耀斑垂直电流演化分析","authors":"Haili Li,&nbsp;Xiaofeng Deng,&nbsp;Hongfei Liang,&nbsp;Xinping Zhou,&nbsp;Yu Liu,&nbsp;Zhongquan Qu","doi":"10.1007/s11207-025-02467-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we examine the morphological evolution and current distribution of the X9.3-class flare on 6 September 2017 that occurred in the active region (AR) 12673. We combine the high-resolution observations of the Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory. The vertical current intensity and the soft X-ray flux within the active region showed two peaks, corresponding, respectively, to the X2.2 and X9.3 flares on that day, while the latter constituted a more significant increase. A pair of conjugate current ribbons appeared at the same locations consistent with the two ribbons of the flare. These current ribbons underwent sustained and significant changes during the X9.3 flare eruption. In the early period of the flare, there was a substantial decrease in the area of the current ribbons, resulting in the emergence of a series of high-density small current islands. During the later phase, not only did the area of the currents rapidly increase, but also the flare kernels evolved into two flare bands along the sheared magnetic neutral line in the photosphere. The AIA 1600 Å and 304 Å images revealed that the two ribbons of the X9.3 flare formed from small bright kernels. It was also observed that the positions of the flare kernels closely matched those of the current islands. Based on the vertical current distribution and evolution near the highly sheared core field region during the X9.3 flare, we conclude that this flare eruption should be attributed to tether-cutting magnetic reconnection.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Vertical Current Evolution for the X9.3 Flare on 6 September 2017\",\"authors\":\"Haili Li,&nbsp;Xiaofeng Deng,&nbsp;Hongfei Liang,&nbsp;Xinping Zhou,&nbsp;Yu Liu,&nbsp;Zhongquan Qu\",\"doi\":\"10.1007/s11207-025-02467-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we examine the morphological evolution and current distribution of the X9.3-class flare on 6 September 2017 that occurred in the active region (AR) 12673. We combine the high-resolution observations of the Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory. The vertical current intensity and the soft X-ray flux within the active region showed two peaks, corresponding, respectively, to the X2.2 and X9.3 flares on that day, while the latter constituted a more significant increase. A pair of conjugate current ribbons appeared at the same locations consistent with the two ribbons of the flare. These current ribbons underwent sustained and significant changes during the X9.3 flare eruption. In the early period of the flare, there was a substantial decrease in the area of the current ribbons, resulting in the emergence of a series of high-density small current islands. During the later phase, not only did the area of the currents rapidly increase, but also the flare kernels evolved into two flare bands along the sheared magnetic neutral line in the photosphere. The AIA 1600 Å and 304 Å images revealed that the two ribbons of the X9.3 flare formed from small bright kernels. It was also observed that the positions of the flare kernels closely matched those of the current islands. Based on the vertical current distribution and evolution near the highly sheared core field region during the X9.3 flare, we conclude that this flare eruption should be attributed to tether-cutting magnetic reconnection.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"300 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-025-02467-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02467-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了2017年9月6日发生在活跃区(AR) 12673的x9.3级耀斑的形态演变和电流分布。我们结合了太阳动力学观测台上大气成像组件(AIA)和日震磁成像仪(HMI)仪器的高分辨率观测结果。活动区内的垂直电流强度和软x射线通量呈现两个峰值,分别对应当天的X2.2和X9.3耀斑,其中后者的增加更为显著。一对共轭电流带出现在与耀斑的两条带状相同的位置。这些条带在X9.3级耀斑爆发期间经历了持续而显著的变化。在耀斑早期,电流带的面积大幅减少,导致出现了一系列高密度的小电流岛。在后期,不仅电流的面积迅速增加,而且耀斑核沿着光球中剪切磁中性线演变成两个耀斑带。AIA 1600 Å和304 Å的图像显示,X9.3耀斑的两条带状是由明亮的小核形成的。还观察到耀斑核的位置与目前岛屿的位置非常吻合。根据X9.3耀斑在高剪切地核区域附近的垂直电流分布和演化,我们认为这次耀斑的爆发应归因于剪绳式磁重联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Vertical Current Evolution for the X9.3 Flare on 6 September 2017

In this article, we examine the morphological evolution and current distribution of the X9.3-class flare on 6 September 2017 that occurred in the active region (AR) 12673. We combine the high-resolution observations of the Atmospheric Imaging Assembly (AIA) and Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory. The vertical current intensity and the soft X-ray flux within the active region showed two peaks, corresponding, respectively, to the X2.2 and X9.3 flares on that day, while the latter constituted a more significant increase. A pair of conjugate current ribbons appeared at the same locations consistent with the two ribbons of the flare. These current ribbons underwent sustained and significant changes during the X9.3 flare eruption. In the early period of the flare, there was a substantial decrease in the area of the current ribbons, resulting in the emergence of a series of high-density small current islands. During the later phase, not only did the area of the currents rapidly increase, but also the flare kernels evolved into two flare bands along the sheared magnetic neutral line in the photosphere. The AIA 1600 Å and 304 Å images revealed that the two ribbons of the X9.3 flare formed from small bright kernels. It was also observed that the positions of the flare kernels closely matched those of the current islands. Based on the vertical current distribution and evolution near the highly sheared core field region during the X9.3 flare, we conclude that this flare eruption should be attributed to tether-cutting magnetic reconnection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信