Chenhuan Liu, Qin Yu, Lingyan Shen, Xiaoyan Wen, Juan lian, Jiani Wang, Jin Yang, Lin Chen
{"title":"头孢汀通过调节TGF-β/SMAD途径预防增生性瘢痕形成","authors":"Chenhuan Liu, Qin Yu, Lingyan Shen, Xiaoyan Wen, Juan lian, Jiani Wang, Jin Yang, Lin Chen","doi":"10.1007/s00403-025-04120-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hypertrophic scarring (HS) is a fibrotic skin disorder characterized by excessive deposition of extracellular matrix (ECM), leading to symptoms such as pain, itching, and skin contraction. HS can also result in restricted joint mobility and cosmetic deformities, imposing psychological and economic burdens on patients. Additionally, it increases wound care costs, and currently, no ideal treatment options exist. Therefore, HS is not only a clinical care issue but also a societal problem, with significant challenges related to its management and prevention. In this study, a custom-made cepharanthine ointment was applied to a rabbit ear scar model to investigate its effects on morphology, histology, and protein expression in HS. Additionally, the mechanism underlying the effect of cepharanthine on affected fibroblasts and the expression of ECM proteins was explored in vitro models of fibrosis. Animal experiments demonstrated that cepharanthine significantly reduced the tissue scar hypertrophy index and collagen content, improved the arrangement of fibroblasts, and inhibited ECM production. Cellular experiments indicated that cepharanthine effectively downregulated key proteins in the TGF-β/SMAD pathway, decreased ECM protein expression, and suppressed fibroblast proliferation and migration. Cepharanthine can prevent HS by reducing ECM deposition through the TGF-β/SMAD signalling pathway.</p></div>","PeriodicalId":8203,"journal":{"name":"Archives of Dermatological Research","volume":"317 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cepharantine prevents hypertrophic scarring by regulating the TGF-β/SMAD pathway\",\"authors\":\"Chenhuan Liu, Qin Yu, Lingyan Shen, Xiaoyan Wen, Juan lian, Jiani Wang, Jin Yang, Lin Chen\",\"doi\":\"10.1007/s00403-025-04120-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hypertrophic scarring (HS) is a fibrotic skin disorder characterized by excessive deposition of extracellular matrix (ECM), leading to symptoms such as pain, itching, and skin contraction. HS can also result in restricted joint mobility and cosmetic deformities, imposing psychological and economic burdens on patients. Additionally, it increases wound care costs, and currently, no ideal treatment options exist. Therefore, HS is not only a clinical care issue but also a societal problem, with significant challenges related to its management and prevention. In this study, a custom-made cepharanthine ointment was applied to a rabbit ear scar model to investigate its effects on morphology, histology, and protein expression in HS. Additionally, the mechanism underlying the effect of cepharanthine on affected fibroblasts and the expression of ECM proteins was explored in vitro models of fibrosis. Animal experiments demonstrated that cepharanthine significantly reduced the tissue scar hypertrophy index and collagen content, improved the arrangement of fibroblasts, and inhibited ECM production. Cellular experiments indicated that cepharanthine effectively downregulated key proteins in the TGF-β/SMAD pathway, decreased ECM protein expression, and suppressed fibroblast proliferation and migration. Cepharanthine can prevent HS by reducing ECM deposition through the TGF-β/SMAD signalling pathway.</p></div>\",\"PeriodicalId\":8203,\"journal\":{\"name\":\"Archives of Dermatological Research\",\"volume\":\"317 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Dermatological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00403-025-04120-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Dermatological Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00403-025-04120-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Cepharantine prevents hypertrophic scarring by regulating the TGF-β/SMAD pathway
Hypertrophic scarring (HS) is a fibrotic skin disorder characterized by excessive deposition of extracellular matrix (ECM), leading to symptoms such as pain, itching, and skin contraction. HS can also result in restricted joint mobility and cosmetic deformities, imposing psychological and economic burdens on patients. Additionally, it increases wound care costs, and currently, no ideal treatment options exist. Therefore, HS is not only a clinical care issue but also a societal problem, with significant challenges related to its management and prevention. In this study, a custom-made cepharanthine ointment was applied to a rabbit ear scar model to investigate its effects on morphology, histology, and protein expression in HS. Additionally, the mechanism underlying the effect of cepharanthine on affected fibroblasts and the expression of ECM proteins was explored in vitro models of fibrosis. Animal experiments demonstrated that cepharanthine significantly reduced the tissue scar hypertrophy index and collagen content, improved the arrangement of fibroblasts, and inhibited ECM production. Cellular experiments indicated that cepharanthine effectively downregulated key proteins in the TGF-β/SMAD pathway, decreased ECM protein expression, and suppressed fibroblast proliferation and migration. Cepharanthine can prevent HS by reducing ECM deposition through the TGF-β/SMAD signalling pathway.
期刊介绍:
Archives of Dermatological Research is a highly rated international journal that publishes original contributions in the field of experimental dermatology, including papers on biochemistry, morphology and immunology of the skin. The journal is among the few not related to dermatological associations or belonging to respective societies which guarantees complete independence. This English-language journal also offers a platform for review articles in areas of interest for dermatologists and for publication of innovative clinical trials.