仿生嗅觉模型与MEMS传感器阵列的集成增强了气味分类

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen Luo;Yujie Yang;Dongcheng Xie;Zhe Wang;Yongfei Zhang;Xiaolei Shen;Lei Xu
{"title":"仿生嗅觉模型与MEMS传感器阵列的集成增强了气味分类","authors":"Chen Luo;Yujie Yang;Dongcheng Xie;Zhe Wang;Yongfei Zhang;Xiaolei Shen;Lei Xu","doi":"10.1109/LSENS.2025.3558967","DOIUrl":null,"url":null,"abstract":"This letter presents a solution that integrates a microelectromechanical systems sensor array with a bionic olfactory model (BOM) to simplify data processing and enhance odor classification accuracy. The integrated sensor array adopts a quadrilateral cantilever beam structure with four resistive sensors, each sputtered with a different sensitive material, including indium oxide (<inline-formula><tex-math>$\\mathrm{In_{2}O_{3}}$</tex-math></inline-formula>) doped with Au, Ag, Pt, and Pd. The BOM consists of a bionic olfactory receptor layer and a bionic olfactory bulb layer, capable of encoding sensor signals and efficiently extracting odor features without manual feature engineering. This system focuses on the classification of food types based on odor characteristics. To verify the performance of the system, data collection and performance analysis were performed on seven kinds of fruits (apple, banana, orange, mango, strawberry, pear, kiwi). The proposed model can directly extract odor features from sensor signals without feature engineering. Compared with traditional method, the system achieves an improvement in classification accuracy from 78.1% to 91.9% when using the k-nearest neighbors classifier.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 5","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Bionic Olfactory Model With MEMS Sensor Array Enhances Odor Classification\",\"authors\":\"Chen Luo;Yujie Yang;Dongcheng Xie;Zhe Wang;Yongfei Zhang;Xiaolei Shen;Lei Xu\",\"doi\":\"10.1109/LSENS.2025.3558967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a solution that integrates a microelectromechanical systems sensor array with a bionic olfactory model (BOM) to simplify data processing and enhance odor classification accuracy. The integrated sensor array adopts a quadrilateral cantilever beam structure with four resistive sensors, each sputtered with a different sensitive material, including indium oxide (<inline-formula><tex-math>$\\\\mathrm{In_{2}O_{3}}$</tex-math></inline-formula>) doped with Au, Ag, Pt, and Pd. The BOM consists of a bionic olfactory receptor layer and a bionic olfactory bulb layer, capable of encoding sensor signals and efficiently extracting odor features without manual feature engineering. This system focuses on the classification of food types based on odor characteristics. To verify the performance of the system, data collection and performance analysis were performed on seven kinds of fruits (apple, banana, orange, mango, strawberry, pear, kiwi). The proposed model can directly extract odor features from sensor signals without feature engineering. Compared with traditional method, the system achieves an improvement in classification accuracy from 78.1% to 91.9% when using the k-nearest neighbors classifier.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 5\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955708/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955708/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种将微机电系统传感器阵列与仿生嗅觉模型(BOM)集成的解决方案,以简化数据处理并提高气味分类的准确性。集成传感器阵列采用四边形悬臂梁结构,带有四个电阻传感器,每个传感器都溅射有不同的敏感材料,包括掺杂金、银、铂和钯的氧化铟($\mathrm{In_{2}O_{3}}$)。BOM 由仿生嗅觉感受器层和仿生嗅球层组成,能够对传感器信号进行编码,并在无需人工特征工程的情况下高效提取气味特征。该系统的重点是根据气味特征对食物类型进行分类。为了验证系统的性能,对七种水果(苹果、香蕉、橙子、芒果、草莓、梨、猕猴桃)进行了数据收集和性能分析。所提出的模型可以直接从传感器信号中提取气味特征,而无需进行特征工程。与传统方法相比,当使用 k-nearest neighbors 分类器时,系统的分类准确率从 78.1% 提高到 91.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Bionic Olfactory Model With MEMS Sensor Array Enhances Odor Classification
This letter presents a solution that integrates a microelectromechanical systems sensor array with a bionic olfactory model (BOM) to simplify data processing and enhance odor classification accuracy. The integrated sensor array adopts a quadrilateral cantilever beam structure with four resistive sensors, each sputtered with a different sensitive material, including indium oxide ($\mathrm{In_{2}O_{3}}$) doped with Au, Ag, Pt, and Pd. The BOM consists of a bionic olfactory receptor layer and a bionic olfactory bulb layer, capable of encoding sensor signals and efficiently extracting odor features without manual feature engineering. This system focuses on the classification of food types based on odor characteristics. To verify the performance of the system, data collection and performance analysis were performed on seven kinds of fruits (apple, banana, orange, mango, strawberry, pear, kiwi). The proposed model can directly extract odor features from sensor signals without feature engineering. Compared with traditional method, the system achieves an improvement in classification accuracy from 78.1% to 91.9% when using the k-nearest neighbors classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信