CLIP-TNseg:超声图像中甲状腺结节分割的多模态混合框架

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinjie Sun;Boxiong Wei;Yalong Jiang;Liquan Mao;Qi Zhao
{"title":"CLIP-TNseg:超声图像中甲状腺结节分割的多模态混合框架","authors":"Xinjie Sun;Boxiong Wei;Yalong Jiang;Liquan Mao;Qi Zhao","doi":"10.1109/LSP.2025.3556789","DOIUrl":null,"url":null,"abstract":"Thyroid nodule segmentation in ultrasound images is crucial for accurate diagnosis and treatment planning. However, existing methods struggle with segmentation accuracy, interpretability, and generalization. This letter proposes CLIP-TNseg, a novel framework that integrates a multimodal large model with a neural network architecture to address these challenges. We innovatively divide visual features into coarse-grained and fine-grained components, leveraging textual integration with coarse-grained features for enhanced semantic understanding. Specifically, the Coarse-grained Branch extracts high-level semantic features from a frozen CLIP model, while the Fine-grained Branch refines spatial details using U-Net-style residual blocks. Extensive experiments on the newly collected PKTN dataset and other public datasets demonstrate the competitive performance of CLIP-TNseg. Additional ablation experiments confirm the critical contribution of textual inputs, particularly highlighting the effectiveness of our carefully designed textual prompts compared to fixed or absent textual information.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1625-1629"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLIP-TNseg: A Multi-Modal Hybrid Framework for Thyroid Nodule Segmentation in Ultrasound Images\",\"authors\":\"Xinjie Sun;Boxiong Wei;Yalong Jiang;Liquan Mao;Qi Zhao\",\"doi\":\"10.1109/LSP.2025.3556789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thyroid nodule segmentation in ultrasound images is crucial for accurate diagnosis and treatment planning. However, existing methods struggle with segmentation accuracy, interpretability, and generalization. This letter proposes CLIP-TNseg, a novel framework that integrates a multimodal large model with a neural network architecture to address these challenges. We innovatively divide visual features into coarse-grained and fine-grained components, leveraging textual integration with coarse-grained features for enhanced semantic understanding. Specifically, the Coarse-grained Branch extracts high-level semantic features from a frozen CLIP model, while the Fine-grained Branch refines spatial details using U-Net-style residual blocks. Extensive experiments on the newly collected PKTN dataset and other public datasets demonstrate the competitive performance of CLIP-TNseg. Additional ablation experiments confirm the critical contribution of textual inputs, particularly highlighting the effectiveness of our carefully designed textual prompts compared to fixed or absent textual information.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1625-1629\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10946874/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10946874/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

超声图像中的甲状腺结节分割对于准确诊断和治疗计划至关重要。然而,现有的方法在分割准确性、可解释性和通用性方面都存在问题。本文提出的 CLIP-TNseg 是一种新颖的框架,它将多模态大型模型与神经网络架构整合在一起,以应对这些挑战。我们创新性地将视觉特征分为粗粒度和细粒度两部分,利用文本与粗粒度特征的整合来增强语义理解。具体来说,粗粒度分支从冻结的 CLIP 模型中提取高级语义特征,而细粒度分支则使用 U-Net 类型的残差块完善空间细节。在新收集的 PKTN 数据集和其他公共数据集上进行的大量实验证明,CLIP-TNseg 的性能极具竞争力。更多的消融实验证实了文本输入的重要贡献,特别是与固定或不存在的文本信息相比,我们精心设计的文本提示更加有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLIP-TNseg: A Multi-Modal Hybrid Framework for Thyroid Nodule Segmentation in Ultrasound Images
Thyroid nodule segmentation in ultrasound images is crucial for accurate diagnosis and treatment planning. However, existing methods struggle with segmentation accuracy, interpretability, and generalization. This letter proposes CLIP-TNseg, a novel framework that integrates a multimodal large model with a neural network architecture to address these challenges. We innovatively divide visual features into coarse-grained and fine-grained components, leveraging textual integration with coarse-grained features for enhanced semantic understanding. Specifically, the Coarse-grained Branch extracts high-level semantic features from a frozen CLIP model, while the Fine-grained Branch refines spatial details using U-Net-style residual blocks. Extensive experiments on the newly collected PKTN dataset and other public datasets demonstrate the competitive performance of CLIP-TNseg. Additional ablation experiments confirm the critical contribution of textual inputs, particularly highlighting the effectiveness of our carefully designed textual prompts compared to fixed or absent textual information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信