GM-PHD滤波器的最优层次算法平均融合

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xue Yu;Feng Xi-An
{"title":"GM-PHD滤波器的最优层次算法平均融合","authors":"Xue Yu;Feng Xi-An","doi":"10.1109/LSP.2025.3554142","DOIUrl":null,"url":null,"abstract":"We achieve the optimal Arithmetic Average (AA) fusion algorithm of Gaussian Mixture Probability Hypothesis Density (GM-PHD) filters in a hierarchical structure. First, the optimal single-target estimate fusion is derived, during which the prior estimate is indispensable. Then, the derived optimal estimate fusion is employed as the merging method of the AA fusion. A master filter dedicated to computing prior density is introduced, so our fusion algorithm features a hierarchical structure. Experiment results evidence our algorithm's optimality and superiority over the standard AA fusion.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1605-1609"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimal Hierarchical Arithmetic Average Fusion of GM-PHD Filters\",\"authors\":\"Xue Yu;Feng Xi-An\",\"doi\":\"10.1109/LSP.2025.3554142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We achieve the optimal Arithmetic Average (AA) fusion algorithm of Gaussian Mixture Probability Hypothesis Density (GM-PHD) filters in a hierarchical structure. First, the optimal single-target estimate fusion is derived, during which the prior estimate is indispensable. Then, the derived optimal estimate fusion is employed as the merging method of the AA fusion. A master filter dedicated to computing prior density is introduced, so our fusion algorithm features a hierarchical structure. Experiment results evidence our algorithm's optimality and superiority over the standard AA fusion.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1605-1609\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937493/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937493/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们以分层结构实现了高斯混杂概率假设密度(GM-PHD)滤波器的最佳算术平均(AA)融合算法。首先,推导出最优的单目标估计融合算法,在这一过程中,先验估计是不可或缺的。然后,将推导出的最优估计融合作为 AA 融合的合并方法。我们引入了一个专门计算先验密度的主滤波器,因此我们的融合算法具有分层结构。实验结果证明,我们的算法是最优的,而且优于标准 AA 融合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Hierarchical Arithmetic Average Fusion of GM-PHD Filters
We achieve the optimal Arithmetic Average (AA) fusion algorithm of Gaussian Mixture Probability Hypothesis Density (GM-PHD) filters in a hierarchical structure. First, the optimal single-target estimate fusion is derived, during which the prior estimate is indispensable. Then, the derived optimal estimate fusion is employed as the merging method of the AA fusion. A master filter dedicated to computing prior density is introduced, so our fusion algorithm features a hierarchical structure. Experiment results evidence our algorithm's optimality and superiority over the standard AA fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信