弯曲连接的子空间的代数表征及其应用

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sadmir Kudin;Enes Pasalic;Alexandr Polujan;Fengrong Zhang
{"title":"弯曲连接的子空间的代数表征及其应用","authors":"Sadmir Kudin;Enes Pasalic;Alexandr Polujan;Fengrong Zhang","doi":"10.1109/TIT.2025.3547533","DOIUrl":null,"url":null,"abstract":"Every Boolean bent function <italic>f</i> can be written either as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> of two complementary semi-bent functions <inline-formula> <tex-math>$f_{1},f_{2}$ </tex-math></inline-formula>; or as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula> of four Boolean functions <inline-formula> <tex-math>$f_{1},f_{2},f_{3},f_{4}$ </tex-math></inline-formula>, all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to specify conditions for these bent concatenations so that <italic>f</i> does (not) belong to the completed Maiorana-McFarland class <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula>. In this article, we resolve this question completely by providing the algebraic characterization of <inline-formula> <tex-math>$\\mathcal {M}$ </tex-math></inline-formula>-subspaces for the concatenation of the form <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula>, which allows us to estimate <inline-formula> <tex-math>${\\rm {ind}}(f)$ </tex-math></inline-formula>, the linearity index of <italic>f</i>, and consequently to establish the necessary and sufficient conditions so that <italic>f</i> is outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula>. Based on these conditions, we propose several explicit and generic design methods of specifying bent functions outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula> in the special case when <inline-formula> <tex-math>$f=g||h||g||(h+1)$ </tex-math></inline-formula>, where <italic>g</i> and <italic>h</i> are bent functions. Moreover, we show that it is possible to even decrease the linearity index of <inline-formula> <tex-math>$f = g||h||g||(h+1)$ </tex-math></inline-formula>, compared to <inline-formula> <tex-math>${\\rm {ind}}(g)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\rm {ind}}(h)$ </tex-math></inline-formula>, if the largest dimension of a common <inline-formula> <tex-math>$\\mathcal {M}$ </tex-math></inline-formula>-subspace of <italic>g</i> and <italic>h</i> is small enough (less than <inline-formula> <tex-math>$\\min \\{{\\rm {ind}}(g), {\\rm {ind}}(h)\\} - 1$ </tex-math></inline-formula>). This also induces iterative methods of constructing bent functions outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula> with (controllable) low linearity index. Finally, we derive a lower bound on the 2-rank of <italic>f</i> and show that this concatenation method can generate bent functions that are provably outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#} \\cup {\\mathcal {PS}}_{ap}^{\\#}$ </tex-math></inline-formula>. In difference to the approach of Weng et al. (2007) that uses the direct sum and a bent function <italic>g</i> outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula>, our method employs <inline-formula> <tex-math>$g, h \\in {\\mathcal {M}}^{\\#}$ </tex-math></inline-formula> for the same purpose.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3999-4011"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909699","citationCount":"0","resultStr":"{\"title\":\"The Algebraic Characterization of ℳ-Subspaces of Bent Concatenations and Its Application\",\"authors\":\"Sadmir Kudin;Enes Pasalic;Alexandr Polujan;Fengrong Zhang\",\"doi\":\"10.1109/TIT.2025.3547533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every Boolean bent function <italic>f</i> can be written either as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> of two complementary semi-bent functions <inline-formula> <tex-math>$f_{1},f_{2}$ </tex-math></inline-formula>; or as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula> of four Boolean functions <inline-formula> <tex-math>$f_{1},f_{2},f_{3},f_{4}$ </tex-math></inline-formula>, all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to specify conditions for these bent concatenations so that <italic>f</i> does (not) belong to the completed Maiorana-McFarland class <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula>. In this article, we resolve this question completely by providing the algebraic characterization of <inline-formula> <tex-math>$\\\\mathcal {M}$ </tex-math></inline-formula>-subspaces for the concatenation of the form <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula>, which allows us to estimate <inline-formula> <tex-math>${\\\\rm {ind}}(f)$ </tex-math></inline-formula>, the linearity index of <italic>f</i>, and consequently to establish the necessary and sufficient conditions so that <italic>f</i> is outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula>. Based on these conditions, we propose several explicit and generic design methods of specifying bent functions outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula> in the special case when <inline-formula> <tex-math>$f=g||h||g||(h+1)$ </tex-math></inline-formula>, where <italic>g</i> and <italic>h</i> are bent functions. Moreover, we show that it is possible to even decrease the linearity index of <inline-formula> <tex-math>$f = g||h||g||(h+1)$ </tex-math></inline-formula>, compared to <inline-formula> <tex-math>${\\\\rm {ind}}(g)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\rm {ind}}(h)$ </tex-math></inline-formula>, if the largest dimension of a common <inline-formula> <tex-math>$\\\\mathcal {M}$ </tex-math></inline-formula>-subspace of <italic>g</i> and <italic>h</i> is small enough (less than <inline-formula> <tex-math>$\\\\min \\\\{{\\\\rm {ind}}(g), {\\\\rm {ind}}(h)\\\\} - 1$ </tex-math></inline-formula>). This also induces iterative methods of constructing bent functions outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula> with (controllable) low linearity index. Finally, we derive a lower bound on the 2-rank of <italic>f</i> and show that this concatenation method can generate bent functions that are provably outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#} \\\\cup {\\\\mathcal {PS}}_{ap}^{\\\\#}$ </tex-math></inline-formula>. In difference to the approach of Weng et al. (2007) that uses the direct sum and a bent function <italic>g</i> outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula>, our method employs <inline-formula> <tex-math>$g, h \\\\in {\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula> for the same purpose.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3999-4011\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909699\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909699/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909699/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

每个布尔弯曲函数f可以写成两个互补的半弯曲函数$f_{1},f_{2}$的连接$f=f_{1}|| f_{2}$;或作为四个布尔函数$f_{1},f_{2},f_{3},f_{4}$的连接$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$,它们同时是弯曲的、半弯曲的或五值谱函数。在这种情况下,必须为这些弯曲连接指定条件,以便f不属于已完成的Maiorana-McFarland类${\mathcal {M}}^{\#}$。在本文中,我们通过为形式$f=f_{1}|| f_{2}$和$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$的连接提供$\mathcal {M}$ -子空间的代数表征完全解决了这个问题,这使我们能够估计${\rm {ind}}(f)$, f的线性指标,从而建立必要和充分条件,使f在${\mathcal {M}}^{\#}$之外。基于这些条件,我们提出了几种明确的和通用的设计方法来指定弯曲函数在${\mathcal {M}}^{\#}$外的特殊情况下$f=g||h||g||(h+1)$,其中g和h是弯曲函数。此外,我们表明,如果g和h的共同$\mathcal {M}$ -子空间的最大维足够小(小于$\min \{{\rm {ind}}(g), {\rm {ind}}(h)\} - 1$),甚至可以降低$f = g||h||g||(h+1)$的线性指数,与${\rm {ind}}(g)$和${\rm {ind}}(h)$相比。这也引出了在${\mathcal {M}}^{\#}$外构造(可控)低线性指数弯曲函数的迭代方法。最后,我们推导了f的2阶下界,并证明了这种连接方法可以生成可证明在${\mathcal {M}}^{\#} \cup {\mathcal {PS}}_{ap}^{\#}$之外的弯曲函数。与Weng等人(2007)使用直接和和${\mathcal {M}}^{\#}$外部的弯曲函数g的方法不同,我们的方法使用$g, h \in {\mathcal {M}}^{\#}$达到相同的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Algebraic Characterization of ℳ-Subspaces of Bent Concatenations and Its Application
Every Boolean bent function f can be written either as a concatenation $f=f_{1}|| f_{2}$ of two complementary semi-bent functions $f_{1},f_{2}$ ; or as a concatenation $f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ of four Boolean functions $f_{1},f_{2},f_{3},f_{4}$ , all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to specify conditions for these bent concatenations so that f does (not) belong to the completed Maiorana-McFarland class ${\mathcal {M}}^{\#}$ . In this article, we resolve this question completely by providing the algebraic characterization of $\mathcal {M}$ -subspaces for the concatenation of the form $f=f_{1}|| f_{2}$ and $f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ , which allows us to estimate ${\rm {ind}}(f)$ , the linearity index of f, and consequently to establish the necessary and sufficient conditions so that f is outside ${\mathcal {M}}^{\#}$ . Based on these conditions, we propose several explicit and generic design methods of specifying bent functions outside ${\mathcal {M}}^{\#}$ in the special case when $f=g||h||g||(h+1)$ , where g and h are bent functions. Moreover, we show that it is possible to even decrease the linearity index of $f = g||h||g||(h+1)$ , compared to ${\rm {ind}}(g)$ and ${\rm {ind}}(h)$ , if the largest dimension of a common $\mathcal {M}$ -subspace of g and h is small enough (less than $\min \{{\rm {ind}}(g), {\rm {ind}}(h)\} - 1$ ). This also induces iterative methods of constructing bent functions outside ${\mathcal {M}}^{\#}$ with (controllable) low linearity index. Finally, we derive a lower bound on the 2-rank of f and show that this concatenation method can generate bent functions that are provably outside ${\mathcal {M}}^{\#} \cup {\mathcal {PS}}_{ap}^{\#}$ . In difference to the approach of Weng et al. (2007) that uses the direct sum and a bent function g outside ${\mathcal {M}}^{\#}$ , our method employs $g, h \in {\mathcal {M}}^{\#}$ for the same purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信