{"title":"弯曲连接的子空间的代数表征及其应用","authors":"Sadmir Kudin;Enes Pasalic;Alexandr Polujan;Fengrong Zhang","doi":"10.1109/TIT.2025.3547533","DOIUrl":null,"url":null,"abstract":"Every Boolean bent function <italic>f</i> can be written either as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> of two complementary semi-bent functions <inline-formula> <tex-math>$f_{1},f_{2}$ </tex-math></inline-formula>; or as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula> of four Boolean functions <inline-formula> <tex-math>$f_{1},f_{2},f_{3},f_{4}$ </tex-math></inline-formula>, all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to specify conditions for these bent concatenations so that <italic>f</i> does (not) belong to the completed Maiorana-McFarland class <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula>. In this article, we resolve this question completely by providing the algebraic characterization of <inline-formula> <tex-math>$\\mathcal {M}$ </tex-math></inline-formula>-subspaces for the concatenation of the form <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula>, which allows us to estimate <inline-formula> <tex-math>${\\rm {ind}}(f)$ </tex-math></inline-formula>, the linearity index of <italic>f</i>, and consequently to establish the necessary and sufficient conditions so that <italic>f</i> is outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula>. Based on these conditions, we propose several explicit and generic design methods of specifying bent functions outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula> in the special case when <inline-formula> <tex-math>$f=g||h||g||(h+1)$ </tex-math></inline-formula>, where <italic>g</i> and <italic>h</i> are bent functions. Moreover, we show that it is possible to even decrease the linearity index of <inline-formula> <tex-math>$f = g||h||g||(h+1)$ </tex-math></inline-formula>, compared to <inline-formula> <tex-math>${\\rm {ind}}(g)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\rm {ind}}(h)$ </tex-math></inline-formula>, if the largest dimension of a common <inline-formula> <tex-math>$\\mathcal {M}$ </tex-math></inline-formula>-subspace of <italic>g</i> and <italic>h</i> is small enough (less than <inline-formula> <tex-math>$\\min \\{{\\rm {ind}}(g), {\\rm {ind}}(h)\\} - 1$ </tex-math></inline-formula>). This also induces iterative methods of constructing bent functions outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula> with (controllable) low linearity index. Finally, we derive a lower bound on the 2-rank of <italic>f</i> and show that this concatenation method can generate bent functions that are provably outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#} \\cup {\\mathcal {PS}}_{ap}^{\\#}$ </tex-math></inline-formula>. In difference to the approach of Weng et al. (2007) that uses the direct sum and a bent function <italic>g</i> outside <inline-formula> <tex-math>${\\mathcal {M}}^{\\#}$ </tex-math></inline-formula>, our method employs <inline-formula> <tex-math>$g, h \\in {\\mathcal {M}}^{\\#}$ </tex-math></inline-formula> for the same purpose.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3999-4011"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909699","citationCount":"0","resultStr":"{\"title\":\"The Algebraic Characterization of ℳ-Subspaces of Bent Concatenations and Its Application\",\"authors\":\"Sadmir Kudin;Enes Pasalic;Alexandr Polujan;Fengrong Zhang\",\"doi\":\"10.1109/TIT.2025.3547533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every Boolean bent function <italic>f</i> can be written either as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> of two complementary semi-bent functions <inline-formula> <tex-math>$f_{1},f_{2}$ </tex-math></inline-formula>; or as a concatenation <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula> of four Boolean functions <inline-formula> <tex-math>$f_{1},f_{2},f_{3},f_{4}$ </tex-math></inline-formula>, all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to specify conditions for these bent concatenations so that <italic>f</i> does (not) belong to the completed Maiorana-McFarland class <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula>. In this article, we resolve this question completely by providing the algebraic characterization of <inline-formula> <tex-math>$\\\\mathcal {M}$ </tex-math></inline-formula>-subspaces for the concatenation of the form <inline-formula> <tex-math>$f=f_{1}|| f_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ </tex-math></inline-formula>, which allows us to estimate <inline-formula> <tex-math>${\\\\rm {ind}}(f)$ </tex-math></inline-formula>, the linearity index of <italic>f</i>, and consequently to establish the necessary and sufficient conditions so that <italic>f</i> is outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula>. Based on these conditions, we propose several explicit and generic design methods of specifying bent functions outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula> in the special case when <inline-formula> <tex-math>$f=g||h||g||(h+1)$ </tex-math></inline-formula>, where <italic>g</i> and <italic>h</i> are bent functions. Moreover, we show that it is possible to even decrease the linearity index of <inline-formula> <tex-math>$f = g||h||g||(h+1)$ </tex-math></inline-formula>, compared to <inline-formula> <tex-math>${\\\\rm {ind}}(g)$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\rm {ind}}(h)$ </tex-math></inline-formula>, if the largest dimension of a common <inline-formula> <tex-math>$\\\\mathcal {M}$ </tex-math></inline-formula>-subspace of <italic>g</i> and <italic>h</i> is small enough (less than <inline-formula> <tex-math>$\\\\min \\\\{{\\\\rm {ind}}(g), {\\\\rm {ind}}(h)\\\\} - 1$ </tex-math></inline-formula>). This also induces iterative methods of constructing bent functions outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula> with (controllable) low linearity index. Finally, we derive a lower bound on the 2-rank of <italic>f</i> and show that this concatenation method can generate bent functions that are provably outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#} \\\\cup {\\\\mathcal {PS}}_{ap}^{\\\\#}$ </tex-math></inline-formula>. In difference to the approach of Weng et al. (2007) that uses the direct sum and a bent function <italic>g</i> outside <inline-formula> <tex-math>${\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula>, our method employs <inline-formula> <tex-math>$g, h \\\\in {\\\\mathcal {M}}^{\\\\#}$ </tex-math></inline-formula> for the same purpose.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3999-4011\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909699\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909699/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909699/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The Algebraic Characterization of ℳ-Subspaces of Bent Concatenations and Its Application
Every Boolean bent function f can be written either as a concatenation $f=f_{1}|| f_{2}$ of two complementary semi-bent functions $f_{1},f_{2}$ ; or as a concatenation $f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ of four Boolean functions $f_{1},f_{2},f_{3},f_{4}$ , all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to specify conditions for these bent concatenations so that f does (not) belong to the completed Maiorana-McFarland class ${\mathcal {M}}^{\#}$ . In this article, we resolve this question completely by providing the algebraic characterization of $\mathcal {M}$ -subspaces for the concatenation of the form $f=f_{1}|| f_{2}$ and $f=f_{1}|| f_{2}|| f_{3}|| f_{4}$ , which allows us to estimate ${\rm {ind}}(f)$ , the linearity index of f, and consequently to establish the necessary and sufficient conditions so that f is outside ${\mathcal {M}}^{\#}$ . Based on these conditions, we propose several explicit and generic design methods of specifying bent functions outside ${\mathcal {M}}^{\#}$ in the special case when $f=g||h||g||(h+1)$ , where g and h are bent functions. Moreover, we show that it is possible to even decrease the linearity index of $f = g||h||g||(h+1)$ , compared to ${\rm {ind}}(g)$ and ${\rm {ind}}(h)$ , if the largest dimension of a common $\mathcal {M}$ -subspace of g and h is small enough (less than $\min \{{\rm {ind}}(g), {\rm {ind}}(h)\} - 1$ ). This also induces iterative methods of constructing bent functions outside ${\mathcal {M}}^{\#}$ with (controllable) low linearity index. Finally, we derive a lower bound on the 2-rank of f and show that this concatenation method can generate bent functions that are provably outside ${\mathcal {M}}^{\#} \cup {\mathcal {PS}}_{ap}^{\#}$ . In difference to the approach of Weng et al. (2007) that uses the direct sum and a bent function g outside ${\mathcal {M}}^{\#}$ , our method employs $g, h \in {\mathcal {M}}^{\#}$ for the same purpose.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.