{"title":"确定奇特征下所有广义Zetterberg码的覆盖半径","authors":"Minjia Shi;Shitao Li;Tor Helleseth;Ferruh Özbudak","doi":"10.1109/TIT.2025.3544025","DOIUrl":null,"url":null,"abstract":"For an integer <inline-formula> <tex-math>$s\\ge 1$ </tex-math></inline-formula>, let <inline-formula> <tex-math>${\\mathcal {C}}_{s}(q_{0})$ </tex-math></inline-formula> be the generalized Zetterberg code of length <inline-formula> <tex-math>$q_{0}^{s}+1$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math>${\\mathbb {F}}_{q_{0}}$ </tex-math></inline-formula> of odd characteristic. Recently, Shi et al. determined the covering radius of <inline-formula> <tex-math>${\\mathcal {C}}_{s}(q_{0})$ </tex-math></inline-formula> for <inline-formula> <tex-math>$q_{0}^{s} \\cancel {\\equiv }7 \\pmod {8}$ </tex-math></inline-formula>, and left the remaining case as an open problem. In this paper, we develop a general technique involving arithmetic of finite fields and algebraic curves over finite fields to determine the covering radius of all generalized Zetterberg codes for <inline-formula> <tex-math>$q_{0}^{s} \\equiv 7 \\pmod {8}$ </tex-math></inline-formula>, which therefore solves this open problem. We also introduce the concept of twisted half generalized Zetterberg codes of length <inline-formula> <tex-math>$\\frac {q_{0}^{s}+1}{2}$ </tex-math></inline-formula>, and show the same results hold for them. As a result, we obtain some quasi-perfect codes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3602-3613"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Covering Radius of All Generalized Zetterberg Codes in Odd Characteristic\",\"authors\":\"Minjia Shi;Shitao Li;Tor Helleseth;Ferruh Özbudak\",\"doi\":\"10.1109/TIT.2025.3544025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an integer <inline-formula> <tex-math>$s\\\\ge 1$ </tex-math></inline-formula>, let <inline-formula> <tex-math>${\\\\mathcal {C}}_{s}(q_{0})$ </tex-math></inline-formula> be the generalized Zetterberg code of length <inline-formula> <tex-math>$q_{0}^{s}+1$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math>${\\\\mathbb {F}}_{q_{0}}$ </tex-math></inline-formula> of odd characteristic. Recently, Shi et al. determined the covering radius of <inline-formula> <tex-math>${\\\\mathcal {C}}_{s}(q_{0})$ </tex-math></inline-formula> for <inline-formula> <tex-math>$q_{0}^{s} \\\\cancel {\\\\equiv }7 \\\\pmod {8}$ </tex-math></inline-formula>, and left the remaining case as an open problem. In this paper, we develop a general technique involving arithmetic of finite fields and algebraic curves over finite fields to determine the covering radius of all generalized Zetterberg codes for <inline-formula> <tex-math>$q_{0}^{s} \\\\equiv 7 \\\\pmod {8}$ </tex-math></inline-formula>, which therefore solves this open problem. We also introduce the concept of twisted half generalized Zetterberg codes of length <inline-formula> <tex-math>$\\\\frac {q_{0}^{s}+1}{2}$ </tex-math></inline-formula>, and show the same results hold for them. As a result, we obtain some quasi-perfect codes.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3602-3613\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896697/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896697/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Determining the Covering Radius of All Generalized Zetterberg Codes in Odd Characteristic
For an integer $s\ge 1$ , let ${\mathcal {C}}_{s}(q_{0})$ be the generalized Zetterberg code of length $q_{0}^{s}+1$ over the finite field ${\mathbb {F}}_{q_{0}}$ of odd characteristic. Recently, Shi et al. determined the covering radius of ${\mathcal {C}}_{s}(q_{0})$ for $q_{0}^{s} \cancel {\equiv }7 \pmod {8}$ , and left the remaining case as an open problem. In this paper, we develop a general technique involving arithmetic of finite fields and algebraic curves over finite fields to determine the covering radius of all generalized Zetterberg codes for $q_{0}^{s} \equiv 7 \pmod {8}$ , which therefore solves this open problem. We also introduce the concept of twisted half generalized Zetterberg codes of length $\frac {q_{0}^{s}+1}{2}$ , and show the same results hold for them. As a result, we obtain some quasi-perfect codes.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.