低秩Toeplitz矩阵恢复:下降锥分析和结构随机矩阵

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gao Huang;Song Li
{"title":"低秩Toeplitz矩阵恢复:下降锥分析和结构随机矩阵","authors":"Gao Huang;Song Li","doi":"10.1109/TIT.2025.3550960","DOIUrl":null,"url":null,"abstract":"This note demonstrates that we can stably recover rank-<italic>r</i> Toeplitz matrix <inline-formula> <tex-math>$\\pmb {X}\\in \\mathbb {R}^{n\\times n}$ </tex-math></inline-formula> from a number of rank-one subgaussian measurements on the order of <inline-formula> <tex-math>$r\\log ^{2} n$ </tex-math></inline-formula> with an exponentially decreasing failure probability by employing a nuclear norm minimization program. Our approach utilizes descent cone analysis through Mendelson’s small ball method with the Toeplitz constraint. The key ingredient is to determine the spectral norm of the random matrix of the Toeplitz structure, which may be of independent interest. This improves upon earlier analyses and resolves the conjecture in Chen et al. (IEEE Transactions on Information Theory, 61(7):4034–4059, 2015).","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 5","pages":"3950-3956"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Rank Toeplitz Matrix Restoration: Descent Cone Analysis and Structured Random Matrix\",\"authors\":\"Gao Huang;Song Li\",\"doi\":\"10.1109/TIT.2025.3550960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note demonstrates that we can stably recover rank-<italic>r</i> Toeplitz matrix <inline-formula> <tex-math>$\\\\pmb {X}\\\\in \\\\mathbb {R}^{n\\\\times n}$ </tex-math></inline-formula> from a number of rank-one subgaussian measurements on the order of <inline-formula> <tex-math>$r\\\\log ^{2} n$ </tex-math></inline-formula> with an exponentially decreasing failure probability by employing a nuclear norm minimization program. Our approach utilizes descent cone analysis through Mendelson’s small ball method with the Toeplitz constraint. The key ingredient is to determine the spectral norm of the random matrix of the Toeplitz structure, which may be of independent interest. This improves upon earlier analyses and resolves the conjecture in Chen et al. (IEEE Transactions on Information Theory, 61(7):4034–4059, 2015).\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"71 5\",\"pages\":\"3950-3956\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10932754/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10932754/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了我们可以利用核范数最小化程序,从$ R \log ^{2} n$阶的若干秩一亚高斯测量值中,稳定地恢复$ R阶的Toeplitz矩阵$\pmb {X}\ \乘以n}$中秩R的Toeplitz矩阵$\pmb {X}\,失效概率呈指数递减。我们的方法采用了带有Toeplitz约束的Mendelson小球法的下降锥分析。关键是确定Toeplitz结构的随机矩阵的谱范数,这可能是独立的兴趣。这改进了先前的分析,并解决了Chen等人的猜想(IEEE信息理论学报,61(7):4034 - 4059,2015)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Rank Toeplitz Matrix Restoration: Descent Cone Analysis and Structured Random Matrix
This note demonstrates that we can stably recover rank-r Toeplitz matrix $\pmb {X}\in \mathbb {R}^{n\times n}$ from a number of rank-one subgaussian measurements on the order of $r\log ^{2} n$ with an exponentially decreasing failure probability by employing a nuclear norm minimization program. Our approach utilizes descent cone analysis through Mendelson’s small ball method with the Toeplitz constraint. The key ingredient is to determine the spectral norm of the random matrix of the Toeplitz structure, which may be of independent interest. This improves upon earlier analyses and resolves the conjecture in Chen et al. (IEEE Transactions on Information Theory, 61(7):4034–4059, 2015).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信