Seong-Jin Kim , Hyo-Won Lee , Tae-Dong Yeo , Jeong-Wook Kim , Jong-Won Yu
{"title":"面向全向无线电力传输的发射线圈交叉耦合单步相位控制方法","authors":"Seong-Jin Kim , Hyo-Won Lee , Tae-Dong Yeo , Jeong-Wook Kim , Jong-Won Yu","doi":"10.1016/j.aeue.2025.155809","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a single-step phase control method to mitigate cross-coupling between transmitting (TX) coils in an omnidirectional wireless power transfer (OWPT) system. In OWPT systems, achieving zero cross-coupling is challenging due to slight variations in coil dimensions. Although the cross-coupling value may appear small, it can significantly impact transfer efficiency because the coupling coefficient between the TX and receiving (RX) coils is inherently low in OWPT systems. Consequently, this cross-coupling induces errors in TX currents and degrades efficiency. The proposed method compensates for TX current errors by adjusting the inverter phase in a single step using a superposition-based model, thereby enhancing efficiency. To validate the proposed method, we implemented an OWPT system consisting of three-orthogonal TX coils (150 mm in diameter) and a 60 × 70 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> planar RX coil operating at 6.78 MHz. Experimental results demonstrate that the proposed method, by adjusting the phase in a single step, achieves maximum efficiency and improves overall efficiency by more than 5.8%.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"196 ","pages":"Article 155809"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-step phase control method under cross-coupling between transmitting coils for omnidirectional wireless power transfer\",\"authors\":\"Seong-Jin Kim , Hyo-Won Lee , Tae-Dong Yeo , Jeong-Wook Kim , Jong-Won Yu\",\"doi\":\"10.1016/j.aeue.2025.155809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a single-step phase control method to mitigate cross-coupling between transmitting (TX) coils in an omnidirectional wireless power transfer (OWPT) system. In OWPT systems, achieving zero cross-coupling is challenging due to slight variations in coil dimensions. Although the cross-coupling value may appear small, it can significantly impact transfer efficiency because the coupling coefficient between the TX and receiving (RX) coils is inherently low in OWPT systems. Consequently, this cross-coupling induces errors in TX currents and degrades efficiency. The proposed method compensates for TX current errors by adjusting the inverter phase in a single step using a superposition-based model, thereby enhancing efficiency. To validate the proposed method, we implemented an OWPT system consisting of three-orthogonal TX coils (150 mm in diameter) and a 60 × 70 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> planar RX coil operating at 6.78 MHz. Experimental results demonstrate that the proposed method, by adjusting the phase in a single step, achieves maximum efficiency and improves overall efficiency by more than 5.8%.</div></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"196 \",\"pages\":\"Article 155809\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841125001505\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125001505","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Single-step phase control method under cross-coupling between transmitting coils for omnidirectional wireless power transfer
This paper introduces a single-step phase control method to mitigate cross-coupling between transmitting (TX) coils in an omnidirectional wireless power transfer (OWPT) system. In OWPT systems, achieving zero cross-coupling is challenging due to slight variations in coil dimensions. Although the cross-coupling value may appear small, it can significantly impact transfer efficiency because the coupling coefficient between the TX and receiving (RX) coils is inherently low in OWPT systems. Consequently, this cross-coupling induces errors in TX currents and degrades efficiency. The proposed method compensates for TX current errors by adjusting the inverter phase in a single step using a superposition-based model, thereby enhancing efficiency. To validate the proposed method, we implemented an OWPT system consisting of three-orthogonal TX coils (150 mm in diameter) and a 60 × 70 planar RX coil operating at 6.78 MHz. Experimental results demonstrate that the proposed method, by adjusting the phase in a single step, achieves maximum efficiency and improves overall efficiency by more than 5.8%.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.