线性不适定问题随机重球法的收敛性分析

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Qinian Jin, Yanjun Liu
{"title":"线性不适定问题随机重球法的收敛性分析","authors":"Qinian Jin,&nbsp;Yanjun Liu","doi":"10.1016/j.cam.2025.116702","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider a stochastic heavy-ball method for solving linear ill-posed inverse problems. With suitable choices of the step-sizes and the momentum coefficients, we establish the regularization property of the method under <em>a priori</em> selection of the stopping index and derive the rate of convergence under a benchmark source condition on the sought solution. Numerical results are provided to test the performance of the method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"470 ","pages":"Article 116702"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a stochastic heavy-ball method for linear ill-posed problems\",\"authors\":\"Qinian Jin,&nbsp;Yanjun Liu\",\"doi\":\"10.1016/j.cam.2025.116702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider a stochastic heavy-ball method for solving linear ill-posed inverse problems. With suitable choices of the step-sizes and the momentum coefficients, we establish the regularization property of the method under <em>a priori</em> selection of the stopping index and derive the rate of convergence under a benchmark source condition on the sought solution. Numerical results are provided to test the performance of the method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"470 \",\"pages\":\"Article 116702\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037704272500216X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272500216X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究求解线性不适定逆问题的随机重球法。在适当选择步长和动量系数的情况下,建立了该方法在先验选择停止指标下的正则化性质,并推导了在基准源条件下所求解的收敛速度。数值结果验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of a stochastic heavy-ball method for linear ill-posed problems
In this paper we consider a stochastic heavy-ball method for solving linear ill-posed inverse problems. With suitable choices of the step-sizes and the momentum coefficients, we establish the regularization property of the method under a priori selection of the stopping index and derive the rate of convergence under a benchmark source condition on the sought solution. Numerical results are provided to test the performance of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信